Skip to main content
Log in

Space mapping-focused control techniques for particle dispersions in fluids

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We present and investigate techniques for optimizing particle dispersions in all kinds of Reynolds number flows. In particular, we show the range of application, power and efficiency of space mapping approaches that are based on a hierarchy of models ranging from a complex (fine, accurate, costly) to simple (coarse, rough, cheap) model. Space mapping turns out to be a reasonable approximation to optimal control and a competitive alternative to instantaneous control regarding speed and memory demands when dealing with complex, non-stationary problems. Moreover it allows the easy and efficient treatment of stochastic design problems. To control random particle dynamics in a turbulent flow, we suggest a Monte-Carlo aggressive space mapping algorithm which yields very convincing numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakr MH, Bandler JW, Biernacki RM, Chen SH, Madsen K (1998) A trust region aggressive space mapping algorithm for EM optimization. IEEE Trans Microw Theory Tech 46:2412–2425

    Article  Google Scholar 

  • Bakr MH, Bandler JW, Madsen K, Søndergaard J (2000) Review of the space mapping approach to engineering optimization and modeling. Optim Eng 1:241–276

    Article  MathSciNet  MATH  Google Scholar 

  • Bandler JW, Dakroury SA, Bakr MH (2004) Space mapping: The state of the art. IEEE Trans Microw Theory Tech 52(1):337–360

    Article  Google Scholar 

  • Batchelor GK (1970) Slender-body theory for particles of arbitrary cross-section in Stokes flow. J Fluid Mech 44(3):419–440

    Article  MathSciNet  MATH  Google Scholar 

  • Cox RG (1970) The motion of long slender bodies in a viscous fluid. Part 1. General theory. J Fluid Mech 44(4):791–810

    Article  MATH  Google Scholar 

  • Diaz-Goano C, Minev PD, Nandakumar K (2003) A fictitious domain/finite element method for particulate flows. J Comput Phys 192:105–123

    Article  MathSciNet  MATH  Google Scholar 

  • Echeverría D, Hemker PW (2005) Space mapping and defect correction. Comput Methods Appl Math 5:107–136

    MathSciNet  MATH  Google Scholar 

  • Esmaeeli A, Tryggvason G (1998) Direct numerical simulations of bubbly flows. Part 1. Low Reynolds number arrays. J Fluid Mech 377:313–345

    Article  MATH  Google Scholar 

  • Ferzinger JH, Perie M (2002) Computational methods for fluid dynamics, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Ghattas O, Bark JH (1997) Optimal control of two- and three-dimensional incompressible Navier-Stokes flows. J Comput Phys 136:231–244

    Article  MATH  Google Scholar 

  • Glowinski R, Pan TW, Hesla TI, Joseph DD, Périaux J (2001) A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. J Comput Phys 169:363–426

    Article  MathSciNet  MATH  Google Scholar 

  • Gunzburger MD, Manservisi S (2000) Analysis and approximation of the velocity tracking problem for the Navier-Stokes flows with distributed control. SIAM J Numer Anal 37(5):1481–1512

    Article  MathSciNet  MATH  Google Scholar 

  • Hinze M (2005) Instantaneous closed loop control of the Navier-Stokes system. SIAM J Control Optim 44(2):564–583

    Article  MathSciNet  MATH  Google Scholar 

  • Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2008) Optimization with PDE constraints. Springer, Berlin

    Google Scholar 

  • Hou LS, Yan Y (1997) Dynamics and approximations of a velocity tracking problem for the Navier-Stokes flows with piecewise distributed controls. SIAM J Control Optim 35(6):1847–1885

    Article  MathSciNet  MATH  Google Scholar 

  • Hu HH, Patankar NA, Zhu MY (2001) Direct numerical simulation of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. J Comput Phys 169:427–462

    Article  MathSciNet  MATH  Google Scholar 

  • Ito K, Kunisch K (1996) Augmented Lagrangian-SQP-methods for nonlinear optimal control problems of tracking type. SIAM J Control Optim 34:874–891

    Article  MathSciNet  MATH  Google Scholar 

  • Kelley CT (1999) Iterative methods for optimization. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Koziel S, Bandler JW, Madsen K (2006) A space-mapping framework for engineering optimization—Theory and implementation. IEEE Trans Microw Theory Tech 54(10):3721–3730

    Article  Google Scholar 

  • Koziel S, Bandler JW, Madsen K (2008a) Quality assessment of coarse models and surrogates for space mapping optimization. Optim Eng 9(4):375–391

    Article  MathSciNet  MATH  Google Scholar 

  • Koziel S, Cheng QS, Bandler JW (2008b) Space mapping. IEEE Microw Mag 9(6):105–122

    Article  Google Scholar 

  • Lapeyre B, Pardoux E, Sentis R (2003) Introduction to Monte-Carlo methods for transport and diffusion problems. Oxford University Press, London

    Google Scholar 

  • Launder BE, Spalding BI (1972) Mathematical models of turbulence. Academic Press, London

    MATH  Google Scholar 

  • Marheineke N, Wegener R (2006) Fiber dynamics in turbulent flows: General modeling framework. SIAM J Appl Math 66(5):1703–1726

    Article  MathSciNet  MATH  Google Scholar 

  • Marheineke N, Wegener R (2007) Fiber dynamics in turbulent flows: Taylor drag. SIAM J Appl Math 68(1):1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Marheineke N, Wegener R (2011) Modeling and application of a stochastic drag for fibers in turbulent flows. Int J Multiph Flow 37:136–148

    Article  Google Scholar 

  • Olsen JA, Kerekes RJ (1998) The motion of fibres in turbulent flow. J Fluid Mech 337:47–64

    Article  Google Scholar 

  • Pismen LM, Nir A (1978) On the motion of suspended particles in stationary homogeneous turbulence. J Fluid Mech 84:193–206

    Article  MathSciNet  MATH  Google Scholar 

  • Shih TH, Lumley JL (1986) Second-order modelling of particle dispersion in a turbulent flow. J Fluid Mech 163:1349–363

    Article  MathSciNet  Google Scholar 

  • Wilcox DC (1998) Turbulence modeling for CFD, 2nd edn. DCW Industries, La Cañada

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Marheineke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marheineke, N., Pinnau, R. & Reséndiz, E. Space mapping-focused control techniques for particle dispersions in fluids. Optim Eng 13, 101–120 (2012). https://doi.org/10.1007/s11081-011-9150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-011-9150-6

Keywords

Navigation