Skip to main content

Advertisement

Log in

Prudent constraint-handling technique for multiobjective propeller optimisation

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

The paper presents an alternative constraint-handling technique that converts a nonlinear constrained programming problem into an unconstrained multi-objective optimisation problem. The technique is derived from the behavioural memory constraint-handling method, which was originally implemented for single-objective optimisation with genetic algorithms. We compare our presented technique with two other popular constraint-handling concepts and demonstrate its superiority over them when applied to a propeller optimisation problem. We conclude that the multi-objective behavioural memory constraint-handling technique conjugated with the non-dominated sorting genetic algorithm (NSGA-II) is a prudent method to apply to problems with an infeasible initial design and where constraints have a natural order of satisfaction, which, if not conformed to, would lead to unrealistic designs that impair the search by GA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott IH, Von Doenhoff AE (1959) Theory of wing sections. Dover, New York

    Google Scholar 

  • Benini E (2003) Multiobjective design optimization of b-screw series propellers using evolutionary algorithms. Mar Technol 40(4):229–238

    Google Scholar 

  • Cahon S, Melab N, Talbi EG (2004) Paradiseo: a framework for the reusable design of parallel and distributed metaheuristics. J Heuristics 10(3):357–380

    Article  Google Scholar 

  • Chen JH, Shih YS (2007) Basic design of a series propeller with vibration consideration by genetic algorithm. J Mar Sci Technol 12:119–129

    Article  Google Scholar 

  • Coello CAC (1999) A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl Inf Syst 1(3):269–308

    Google Scholar 

  • Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287

    Article  MathSciNet  MATH  Google Scholar 

  • Coello Coello CA (2009) Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored. Front. Comput. Sci. China 3(1):18–30

    Article  Google Scholar 

  • Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Control Optim 8:631–657

    MathSciNet  MATH  Google Scholar 

  • Davis L (1987) Genetic algorithms and simulated annealing. Pitman, London

    MATH  Google Scholar 

  • de Garis H (1990) Genetic programming: building artificial nervous systems using genetically programmed neural networks modules. In: Porter R, Mooney B (eds) Proceedings of the 7th international conference on machine learning. Morgan Kaufmann, San Mateo, pp 132–139

    Google Scholar 

  • Deb K (2000) An efficient constraint-handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338

    Article  MATH  Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  • Deb K (2008) A robust evolutionary framework for multi-objective optimization. In: Proceedings of the 10th annual conference on genetic and evolutionary computation. ACM, New York, pp 633–640

    Chapter  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Maeyarivan T (2000) A fast and elitist multi-objective genetic algorithm: NSGA-II. In: Parallel problem solving from nature—PPSN VI. Springer, Berlin, pp 849–858

    Chapter  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):181

    Article  Google Scholar 

  • Eckhardt M, Morgan W (1955) A propeller design method. Trans SNAME 63

  • Han KJ (2008) Numerical optimization of hull/propeller/rudder configurations. PhD thesis, Chalmers University of Technology

  • Han KJ, Bark G, Larsson L, Regnstrom B (2006) A procedure for optimizing cavitating propeller blades in a given wake. Ship Technol Res 53(1):39–52

    Google Scholar 

  • Keller J (1966) Enige aspecten bij het ontwerpen van scheepshchroeven. Schip Werf 24(33):658

    Google Scholar 

  • Le Riche R, Knopf-Lenoir C, Haftka R (1995) A segregated genetic algorithm for constrainted structural optimization. In: Eshelman L (ed) Proceedings of the 6th international conference on genetic algorithms. Morgan Kaufmann, San Mateo, pp 558–565

    Google Scholar 

  • Lee JT (1987) Potential based panel method for the analysis of marine propellers in steady flow. PhD thesis, Department of Ocean Engineering, M.I.T

  • Marzi J (2008) Virtue—European approach to developing the numerical towing tank. In: RINA CFD

    Google Scholar 

  • Mezura-Montes E, Coello Coello CA (2008) Constrained optimization via multiobjective evolutionary algorithms. In: Natural computing series. Springer, Berlin, pp 53–75

    Google Scholar 

  • Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Springer, Berlin

    MATH  Google Scholar 

  • Mishima S (1996) Design of cavitating propeller blades in non-uniform flaw by numerical optimization. PhD thesis, Massachusetts Institute of Technology

  • Mishima S, Kinnas S (1997) Application of a numerical optimization technique to the design of cavitating propellers in nonuniform flow. J Ship Res 41(2):93–107

    Google Scholar 

  • Oosterveld M, van Oossanen P (1975) Further computer-analyzed data of the Wageningen b-screw series. Int Shipbuild Prog 22(251):251–262

    Google Scholar 

  • Oyama A (2009) Constraint-handling in evolutionary aerodynamic design. In: Studies in computational intelligence. Springer, Berlin, pp 219–236

    Google Scholar 

  • Schoenauer M, Xanthakis S (1993) Constrained ga optimization. In: Forrest S (ed) Proceedings of the fifth international conference on genetic algorithms, pp 573–580. Morgan Kaufmann, San Mateo

    Google Scholar 

  • Streckwall H (1998) Hydrodynamic analysis of three propellers using a surface panel method for steady and unsteady inflow conditions. In: 22nd ITTC propulsion committee propeller RANS/panel method workshop. Grenoble, France

    Google Scholar 

  • Streckwall H (2005) Numerical models for cavitation and propeller pressure fluctuations. In: Jahrbuch der Schiffbautechnischen Gesellschaft. Springer, Berlin, pp 44–49

    Google Scholar 

  • Takekoshi Y, Kawamura T, Yamaguchi H, Maeda M, Ishii N, Kimura K, Taketani T, Fujii A (2005) Study on the design of propeller blade sections using the optimization algorithm. J Mar Sci Technol 10(2):70–81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romanas Puisa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puisa, R., Streckwall, H. Prudent constraint-handling technique for multiobjective propeller optimisation. Optim Eng 12, 657–680 (2011). https://doi.org/10.1007/s11081-010-9133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-010-9133-z

Keywords

Navigation