Skip to main content
Log in

Parameter identification and shape optimization

An integrated methodology in metal forming and structural applications

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

Simulation of metal forming processes using the Finite Element Method (FEM) is a well established procedure, being nowadays possible to develop alternative approaches, such as inverse methodologies, in solving complex problems. In the present paper, two types of inverse approaches will be discussed, namely the parameter identification and the shape optimization problems. The aim of the former is to evaluate the input parameters for material constitutive models that would lead to the most accurate set of results respecting physical experiments. The second category involves determining the initial geometry of a given specimen leading to a desired final geometry after the forming process. The purpose of the present work is then to formulate these inverse problems as optimization problems, introducing a straightforward methodology of process optimization in engineering applications such as metal forming and structural analysis. To reach this goal, an integrated optimization approach, using a finite element code together with a numerical optimization program, was employed. A gradient-based optimization method, as a combination of the steepest-descent method and the Levenberg-Marquardt techniques, was used. Numerical applications in the parameter optimization category include, namely, the characterization of a non-linear elasto-plastic hardening model and the determination of the parameters for a nonlinear hyperelastic model. It is also discussed the simultaneous identification of both constitutive material model parameters and the friction coefficient parameters. From the point of view of shape optimization problems, the determination of the initial geometry of a specimen in a upsetting billing problem as well as a methodology for defining the most suited blank shape to be formed in a square cup, are discussed. The final results for both categories show that this kind of algorithms have great potential for future developments in more demanding and realistic benchmarks. It is also worth noting that the presented integrated methodology can be easily applied to a first introduction of optimization techniques and numerical simulation to undergraduate courses in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abaqus v6.7 (2007) Simulia Inc, Dassault Systèmes

  • Amar G, Dufailly J (1993) Identification and validation of viscoplastic and damage constitutive equations. Eur J Mech A/Solids 12(2):197–218

    Google Scholar 

  • Andrade-Campos A, Thuiller S, Pilvin P, Teixeira-Dias F (2007) On the determination of material parameters for internal variable thermoelastic-viscoplastic constitutive models. Int J Plast 23:1349–1379

    Article  MATH  Google Scholar 

  • Astrom KJ, Eykho P (1971) System identification: a survey. Automatica 7:123–162

    Article  Google Scholar 

  • Bard Y (1974) Nonlinear parameter estimation. Academy Press, New York

    MATH  Google Scholar 

  • Cailletaud G, Pilvin P (1993) Identification and inverse problems: a modular approach. In: Bertram, Brown, Freed (eds) Material parameter estimation for modern constitutive equations, vol 43, pp 33–45. ASME Book

    Google Scholar 

  • Cailletaud G, Pilvin P (1994) Identification and inverse problems related to material behaviour. In: Proc int seminar on inverse problems, Clamart, pp 79–86

    Google Scholar 

  • Cao J, Lin J (2008) A study on formulation of objective functions for determining material models. Int J Mech Sci 50:193–204

    Article  Google Scholar 

  • Chaboche JL, Nouailhas D, Savalle S (1991) Agice: Logiciel pour l’identification interactive graphique des lois de comportement. Rech Aerosp 3:59–76

    Google Scholar 

  • Fourment L, Chenot JL (1996) Optimal design for non-steady-state metal forming processes—II. Shape optimization method. Int J Numer Methods Eng 39:33–50

    Article  MATH  Google Scholar 

  • Fourment L, Balan T, Chenot JL (1996) Optimal design for non-steady-state metal forming processes—II. Application of shape optimization in forging. Int J Numer Methods Eng 39:51–65

    Article  MATH  Google Scholar 

  • Furukawa T, Yagawa G (1997) Inelastic constitutive parameter identification using evolutionary algorithm with continuous individuals. Int J Numer Methods Eng 40:1071–1090

    Article  MATH  Google Scholar 

  • Gelin JC, Ghouati O (1991) An inverse method for determing viscoplastic properties of aluminium alloys. J Mater Process Tech 45(1):435–440

    Article  Google Scholar 

  • Habraken AM (2004) Modelling the plastic anisotropy of metals. Arch Comput Methods Eng 11:3–96

    Article  MATH  Google Scholar 

  • Jansson T (2005) Optimization of sheet metal forming processes. PhD Dissertation No 936. Institute of Technology, Linkopings Universitet, Sweden

  • Kreibig R, Benedix U, Gorke U-J (2001) Statistical aspects of the identification of material parameters for elasto-plastic models. Arch Appl Mech 71:123–134

    Article  Google Scholar 

  • Kleinermann JP (2000) Identification parametrique et optimisation des procedes de mise a forme par problemes inverses. PhD Thesis. University of Liege

  • Lin J, Yang J (1999) GA-based multiple objective optimisation for determining viscoplastic constitutive equations for superplastic alloys. Int J Plast 15:1181–1196

    Article  MATH  Google Scholar 

  • Liu GR, Han X (2003) Computational inverse techniques in nondestructible evaluation. CRC Press, Boca Raton

    Book  Google Scholar 

  • Mahnken R, Stein E (1996) A unified approach for parameter identication of inelastic material models in the frame of the finite element method. Comput Methods Appl Mech Eng 136:225–258

    Article  MATH  Google Scholar 

  • Maniatty AM, Chen MF (1996) Shape sensitivity analysis for steady metal-forming processes. Int J Numer Methods Eng 39:1199–1217

    Article  MATH  Google Scholar 

  • Maniatty A, Zabaras N (1989) Method for solving inverse elastoviscoplatic problems. J Eng Mech 115(10):2216–2231

    Article  Google Scholar 

  • Maniatty AM, Zabaras N (1994) Investigation of regularization parameters and error estimating in inverse elasticity problems. Int J Numer Methods Eng 37:1039–1052

    Article  MATH  Google Scholar 

  • Marciniak Z, Duncan JL, Hu SJ (2002) Mechanics of sheet metal forming, 3rd edn. Springer, Berlin. Butterworth-Heinemann Editors

    Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of non-linear parameters. J Soc Ind Appl Math 11:431–441

    Article  MathSciNet  MATH  Google Scholar 

  • Martins JAC, Natal JRM, Ferreira AJM (2006) A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain 42:135–147

    Article  Google Scholar 

  • Menezes LF, Teodosiu C (2000) Three-dimensional numerical simulation of the deep-drawing process using solid finite elements. J Mater Process Tech 97:100–106

    Article  Google Scholar 

  • Norris DM, Morran JRB, Scudde JK, Quinones DF (1978) A computer simulation of the tension test. J Mech Phys Solids 26:1–19

    Article  Google Scholar 

  • Oliveira MC, Alves JL, Menezes LF (2003) Improvements of a frictional contact algorithm for strongly curved contact problems. Int J Numer Methods Eng 58:2083–2101

    Article  MathSciNet  MATH  Google Scholar 

  • Oliveira MC, Alves JL, Chaparro BM, Menezes LF (2007) Study on the influence of work-hardening modeling in springback prediction. Int J Plast 23:516–543

    Article  MATH  Google Scholar 

  • Papadrakakis M, Lagaros ND (2003) Soft computing methodologies for structural optimization. Appl Soft Comput 3:288–300

    Article  Google Scholar 

  • Parente MPL, Valente RAF, Jorge RMN, Cardoso RPR, Sousa RJA (2006) Sheet metal forming simulation using EAS solid-shell finite elements. Finite El Anal Des 42:1137–1149

    Article  Google Scholar 

  • Park JJ, Rebelo N et al. (1983) A new approach to preform design in metal forming with the finite element method. Int J Tool Des Res 1:71–79

    Article  Google Scholar 

  • Polak E (1997) Optimization—algorithms and consistent approximations. Springer, New York

    MATH  Google Scholar 

  • Ponthot JP, Kleinermann JP (2006) A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation. Comput Methods Appl Mech Eng 195:5472–5508

    Article  MATH  Google Scholar 

  • Schmit LA (1960) Structural design by systematic synthesis. In: 2nd conf on electronic comput, pp 105–122. ASCE

    Google Scholar 

  • Schmit LA, Malett RH (1963) Structural synthesis and design parameter hierarchy. J Struct Div, ASCE 89:269

    Google Scholar 

  • Schnur D, Zabaras N (1992) An inverse method for determining elastic material properties and a material interface. Int J Numer Methods Eng 33:2039–2057

    Article  MATH  Google Scholar 

  • Simo JC (1998) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Comput Methods Appl Mech Eng 66:199–219

    Article  MathSciNet  Google Scholar 

  • Tang SC, Pan J (2007) Mechanics modeling of sheet metal forming. Springer, Berlin. SAE International

    Book  Google Scholar 

  • Wagoner RH, Chenot JL (2001) Metal forming analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Zhao KM, Lee JK (2004) Inverse estimation of material properties for sheet metals. Commun Numer Methods Eng 20:105–118

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robertt A. F. Valente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valente, R.A.F., Andrade-Campos, A., Carvalho, J.F. et al. Parameter identification and shape optimization. Optim Eng 12, 129–152 (2011). https://doi.org/10.1007/s11081-010-9126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-010-9126-y

Keywords

Navigation