Skip to main content
Log in

On the reformulation of topology optimization problems as linear or convex quadratic mixed 0–1 programs

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We consider equivalent reformulations of nonlinear mixed 0–1 optimization problems arising from a broad range of recent applications of topology optimization for the design of continuum structures and composite materials. We show that the considered problems can equivalently be cast as either linear or convex quadratic mixed 0–1 programs. The reformulations provide new insight into the structure of the problems and may provide a foundation for the development of new methods and heuristics for solving topology optimization problems. The applications considered are maximum stiffness design of structures subjected to static or periodic loads, design of composite materials with prescribed homogenized properties using the inverse homogenization approach, optimization of fluids in Stokes flow, design of band gap structures, and multi-physics problems involving coupled steady-state heat conduction and linear elasticity. Several numerical examples of maximum stiffness design of truss structures are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams W, Forrester R, Glover F (2004) Comparisons and enhancement strategies for linearizing mixed 0–1 quadratic programs. Discret Optim 1:99–120

    Article  MATH  MathSciNet  Google Scholar 

  • Allaire G (2002) Shape optimization by the homogenization method. Springer, New York

    MATH  Google Scholar 

  • Ambrosio L, Buttazzo G (1993) An optimal design problem with perimeter penalization. Calc Var 1:55–69

    Article  MATH  MathSciNet  Google Scholar 

  • Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe M (1995) Optimization of structural topology, shape, and material. Springer, Berlin

    MATH  Google Scholar 

  • Bendsøe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MATH  Google Scholar 

  • Bendsøe M, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, New York

    Google Scholar 

  • Bollapragada S, Ghattas O, Hooker J (2001) Optimal design of truss structures by logical-based branch and cut. Oper Res 49(1):42–51

    Article  MathSciNet  Google Scholar 

  • Borel P, Harpøth A, Frandsen L, Kristensen M, Shi P, Jensen J, Sigmund O (2004) Topology optimization and fabrication of photonic crystal structures. Opt Express 12(9):1996–2001

    Article  Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Methods Eng 41:77–107

    Article  MATH  MathSciNet  Google Scholar 

  • Cook R, Malkus D, Plesha M, Witt R (2001) Concepts and applications of finite element analysis, 4th edn. Wiley, New York

    Google Scholar 

  • Dorn W, Gomory R, Greenberg H (1964) Automatic design of optimal structures. J Méc 3:25–52

    Google Scholar 

  • Eschenauer H, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390

    Article  Google Scholar 

  • Fischetti M, Lodi A (2003) Local branching. Math Program 98:23–47

    Article  MATH  MathSciNet  Google Scholar 

  • Gibiansky L, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48:461–498

    Article  MATH  MathSciNet  Google Scholar 

  • Glover F (1975) Improved linear integer programming formulations on nonlinear integer programs. Manag Sci 22(4):455–460

    Article  MathSciNet  Google Scholar 

  • Glover F (1984) An improved MIP formulation for products of discrete and continuous variables. J Inf Optim Sci 5:469–471

    Google Scholar 

  • Grossman I, Voudouris V, Ghattas O (1992) Mixed-integer linear programming formulations of some nonlinear discrete design optimization problems. In: Floudas C, Pardalos P (eds) Recent advances in global optimization. Princeton University Press, Princeton

    Google Scholar 

  • Guedes J, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83:143–198

    Article  MATH  MathSciNet  Google Scholar 

  • Haftka R (1985) Simultaneous analysis and design. AIAA J 23(7)

  • ILOG (2004) ILOG Cplex 9.0 user’s manual and reference manual. ILOG Inc. http://www.ilog.com

  • Jensen J, Sigmund O (2002) Phononic band gap structures as optimal designs. In: Proceedings of the IUTAM symposium on asymptotics, singularities, and homogenization in problems of mechanics, Liverpool, July 8–11 2002

  • Jog C (2002) Topology design of structures subjected to periodic loading. J Sound Vib 253(3):687–709

    Article  Google Scholar 

  • Nemhauser G, Wolsey L (1999) Integer and combinatorial optimization. Wiley, New York

    MATH  Google Scholar 

  • Sigmund O (1994) Design of material structures using topology optimization. PhD thesis, Department of Solid Mechanics, Technical University of Denmark. DCAMM Report S 69

  • Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20:351–368

    Article  Google Scholar 

  • Sigmund O (1998) Topology optimization in multiphysics problems. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, pp 1–9

  • Sigmund O (2000) A new class of extremal composites. J Mech Phys Solids 48:397–428

    Article  MATH  MathSciNet  Google Scholar 

  • Sigmund O (2001a) Design of multiphysics actuators using topology optimization, part I: one-material structures. Comput Methods Appl Mech Eng 190(49–50):6577–6604

    Article  MATH  Google Scholar 

  • Sigmund O (2001b) Design of multiphysics actuators using topology optimization, part II: two-material structures. Comput Methods Appl Mech Eng 190(49–50):6605–6627

    Article  Google Scholar 

  • Sigmund O, Jensen J (2002) Topology optimization of elastic band gap structures and waveguides. In: H. Mang, F. Rammerstorfer, and J. Eberhardsteiner (eds) Proceedings of the fifth world congress on computational mechanics WCCM V, Vienna, July 7–12 2002

  • Sigmund O, Jensen J (2003) Systematic design of phononic band gap materials and structures by topology optimization. Philos Trans Math Phys Eng Sci 361(1806):1001–1019

    Article  MATH  MathSciNet  Google Scholar 

  • Sigmund O, Torquato S (1996) Composites with extremal thermal expansion coefficients. Appl Phys Lett 69(21):3203–3205

    Article  Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45:1037–1067

    Article  MathSciNet  Google Scholar 

  • Stolpe M, Kawamoto A (2005) Design of planar articulated mechanisms using branch and bound. Math Program 103(2):357–398

    Article  MATH  MathSciNet  Google Scholar 

  • Stolpe M, Svanberg K (2003) Modeling topology optimization problems as linear mixed 0–1 programs. Int J Numer Methods Eng 57(5):723–739

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89:197–224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stolpe.

Additional information

The research is funded by the Danish Natural Science Research Council and the Danish Research Council for Technology and Production Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolpe, M. On the reformulation of topology optimization problems as linear or convex quadratic mixed 0–1 programs. Optim Eng 8, 163–192 (2007). https://doi.org/10.1007/s11081-007-9005-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-007-9005-3

Keywords

Navigation