Skip to main content
Log in

Numerical solution of a class of third-kind Volterra integral equations using Jacobi wavelets

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We propose a spectral collocation method, based on the generalized Jacobi wavelets along with the Gauss–Jacobi quadrature formula, for solving a class of third-kind Volterra integral equations. To do this, the interval of integration is first transformed into the interval [− 1, 1], by considering a suitable change of variable. Then, by introducing special Jacobi parameters, the integral part is approximated using the Gauss–Jacobi quadrature rule. An approximation of the unknown function is considered in terms of Jacobi wavelets functions with unknown coefficients, which must be determined. By substituting this approximation into the equation, and collocating the resulting equation at a set of collocation points, a system of linear algebraic equations is obtained. Then, we suggest a method to determine the number of basis functions necessary to attain a certain precision. Finally, some examples are included to illustrate the applicability, efficiency, and accuracy of the new scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allaei, S.S., Yang, Z.-W., Brunner, H.: Collocation methods for third-kind VIEs. IMA J. Numer. Anal. 37(3), 1104–1124 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Vainikko, G.: Cordial Volterra integral equations I. Numer. Funct. Anal. Optim. 30(9-10), 1145–1172 (2009)

    Article  MathSciNet  Google Scholar 

  3. Vainikko, G.: Cordial Volterra integral equations 2. Numer. Funct. Anal. Optim. 31(1-3), 191–219 (2010)

    Article  MathSciNet  Google Scholar 

  4. Nemati, S., Lima, P.M.: Numerical solution of a third-kind Volterra integral equation using an operational matrix technique. In: 2018 European Control Conference (ECC), Limassol, pp 3215–3220 (2018)

  5. Sidi Ammi, M. R., Torres, D. F. M.: Analysis of fractional integro-differential equations of thermistor type. In: Kochubei, A., Luchko, Y. (eds.) Handbook of Fractional Calculus with Applications, Vol. 1, De Gruyter, Berlin, Boston, 327–346 (2019)

  6. Grossmann, A., Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math Anal. 15(4), 723–736 (1984)

    Article  MathSciNet  Google Scholar 

  7. Grossmann, A., Morlet, J., Paul, T.: Transforms associated to square integrable group representations. J. Math. Phys. 26, 2473–2479 (1985)

    Article  MathSciNet  Google Scholar 

  8. Daubechies, I., Lagarias, J. C.: Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals. SIAM J. Math. Anal. 23(4), 1031–1079 (1992)

    Article  MathSciNet  Google Scholar 

  9. Mallat, S.: A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  Google Scholar 

  10. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Comm. Pure Appl Math. 41(7), 909–996 (1988)

    Article  MathSciNet  Google Scholar 

  11. Li, X.: Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method. Commun. Nonlinear Sci. Numer. Simul. 17 (10), 3934–3946 (2012)

    Article  MathSciNet  Google Scholar 

  12. Chen, Y.M., Yi, M.X., Yu, C.X.: Error analysis for numerical solution of fractional differential equation by Haar wavelets method. J. Comput. Sci. 3(5), 367–373 (2012)

    Article  Google Scholar 

  13. Li, Y.: Solving a nonlinear fractional differential equation using Chebyshev wavelets. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2284–2292 (2010)

    Article  MathSciNet  Google Scholar 

  14. Jafari, H., Yousefi, S.A., Firoozjaee, M.A., Momani, S., Khalique, C.M.: Application of Legendre wavelets for solving fractional differential equations. Comput. Math. Appl. 62(3), 1038–1045 (2011)

    Article  MathSciNet  Google Scholar 

  15. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J. Comput. Appl. Math. 309, 493–510 (2017)

    Article  MathSciNet  Google Scholar 

  16. Nemati, S., Lima, P.M., Sedaghat, S.: Legendre wavelet collocation method combined with the Gauss–Jacobi quadrature for solving fractional delay-type integro-differential equations. Appl. Numer. Math. 149, 99–112 (2020)

    Article  MathSciNet  Google Scholar 

  17. Boggess, A., Narcowich, F.J.: A First Course in Wavelets with Fourier Analysis, second edition. John Wiley & Sons, Inc., Hoboken, NJ (2009)

    MATH  Google Scholar 

  18. Walnut, D.F.: An introduction to wavelet analysis, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston MA (2002)

  19. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods, Springer Series in Computational Mathematics, vol. 41. Springer, Heidelberg (2011)

    Google Scholar 

  20. Pang, G., Chen, W., Sze, K.Y.: Gauss-Jacobi-type quadrature rules for fractional directional integrals. Comput Math. Appl. 66(5), 597–607 (2013)

    Article  MathSciNet  Google Scholar 

  21. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods, Scientific Computation. Springer-Verlag, Berlin (2006)

    Book  Google Scholar 

Download references

Acknowledgment

Pedro M. Lima acknowledges support from Fundação para a Ciência e a Tecnologia (FCT, the Portuguese Foundation for Science and Technology) through the grant UIDB/04621/2020 (CEMAT); Delfim F. M. Torres was supported by FCT within project UIDB/04106/2020 (CIDMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nemati.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati, S., Lima, P.M. & Torres, D.F.M. Numerical solution of a class of third-kind Volterra integral equations using Jacobi wavelets. Numer Algor 86, 675–691 (2021). https://doi.org/10.1007/s11075-020-00906-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00906-9

Keywords

Mathematics Subject Classification 2010

Navigation