Skip to main content
Log in

Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, for the multiple-sets split feasibility problem, that is to find a point closest to a family of closed convex subsets in one space such that its image under a linear bounded mapping will be closest to another family of closed convex subsets in the image space, we study several iterative methods for finding a solution, which solves a certain variational inequality. We show that particular cases of our algorithms are some improvements for existing ones in literature. We also give two numerical examples for illustrating our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruck, R.E.: Properties of fixed point sets of nonexpansive mappings in Banach spaces. Trans. AMS 179, 251–262 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  2. Buong, Ng., Duong, L.Th.Th.: An explicit iterative algorithm for a class of variational inequalities. J. Optim. Theory Appl. 151, 513–52 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Buong, Ng., Quynh, V.X., Thuy, Ng.Th.Th: A steepest-descent Krasnosel’skii - Mann algorithm for a class of variational inequalities in Banach spaces. J. Fixed Point Theory Appl. 18, 519–532 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buong, Ng, Ha, Ng.S., Thuy, Ng.Th.Th.: Hybrid steepest-descent method with a countably infinite family of nonexpansive mappings on Banach spaces. Numer. Algorithms 72, 467–481 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  5. Byrne, C.: Iterative oblique projections onto convex subsets and the split feasibility problem. Inverse Prob. 18, 441–453 (2002)

    Article  MATH  Google Scholar 

  6. Byrne, C.: A unified treatment of some iterative methods in signal processing and image reconstruction. Inverse Prob. 20, 103–1020 (2004)

    Article  MATH  Google Scholar 

  7. Ceng, L.C., Ansari, Q.H., Yao, J.Ch.: Mann-type steepest-descent and modified hybrid steepest descent methods for variational inequalities in Banach spaces. Num. Funct. Anal. Optim. 29(9–10), 987–1033 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ceng, L.C., Ansari, Q.H., Yao, J.Ch.: Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem. Nonl. Anal. 75, 2116–2125 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product spaces. Numer. Algorithms 8, 221–239 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Censor, Y., Elfving, T., Knop, N., Bortfeld, T: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Prob. 21, 2071–2084 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inverse problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  12. Censor, Y., Motova, A., Segal, A.: Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. J. Math. Anal. Appl. 327, 1244–1256 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Censor, Y., Segal, A.: Iterative projection methods in biomedical inverse problems. In: Censor, Y., Jiang M., Louis, A.K. (eds.) Mathematical methods in biomedical imaging and intensity-modulated radiation therapy (IMRT), pp 65–96. Edizioni della Normale, Pisa, Italy (2008)

  14. Combettes, P.L., Yamada, I.: Compositions and convex combinations of averaged nonexpansive operators. J. Math. Anal. Appl. 425, 55–70 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dang, Y., Gao, Y: The strong convergence of a KM-CQ-like algorithm for a split feasibility problem. Inverse Problems 27, 015007(9pp) (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jung, J.S.: Iterative algorithms on the hybrid steepest descent method for the split feasibility problem. J. Nonlinear Sci. Appl. 9, 4214–4225 (2016)

    MATH  MathSciNet  Google Scholar 

  17. Suzuki, T.: Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces. Proc. Am. Math. Soc. 135, 99–106 (2007)

    Article  Google Scholar 

  18. Takahashi, W., Xu, H.K., Yao, J.Ch.: Iterative methods for generalized split feasibility problems in Hilbert spaces. Set-Valued Var. Anal. 23, 205–231 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang, L.: An iterative method for nonexpansive mapping in Hilbert spaces. J. Fixed Point Theory Appl. Article ID 28619, 8 pages. doi:10.1155/2007/28619 (2007)

  20. Wang, F., Xu, H.K.: Cyclic algorithms for split split feasibility problem in Hilbert spaces. Nonlinear Anal. 74, 4105–4111 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659–678 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Xu, H.K.: A variable Krasnosel’skii-Mann algorithm and multiple set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)

    Article  MATH  Google Scholar 

  23. Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Problems 26, 1005018 (17pp) (2010)

    Article  MathSciNet  Google Scholar 

  24. Xu, H.K.: Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 150, 360–378 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yamada, I.: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently parallel algorithms in feasibility and optimization and their applications, pp 473–504. North-Holland, Amsterdam (2001)

    Chapter  Google Scholar 

  26. Yu, X., Shahzad, N., Yao, Y.: Implicit and explicit algorithms for solving the split feasibility problem. Optim. Lett. 6, 1447–1462 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhou, H., Wang, P.: A simpler explicit iterative algorithm for a class of variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 161, 716–727 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Buong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buong, N. Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces. Numer Algor 76, 783–798 (2017). https://doi.org/10.1007/s11075-017-0282-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0282-4

Keywords

Mathematics Subject Classifications (2010)

Navigation