Skip to main content
Log in

Controlling noise error in block iterative methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we analyze the semiconvergence behavior of a non-stationary sequential block iterative method. Based on a slightly modified problem, in the form of a regularized problem, we obtain three techniques for picking relaxation parameters to control the propagated noise component of the error. Also, we give the convergence analysis of the iterative method using these strategies. The performance of our strategies is shown by examples taken from tomographic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Censor, Y., Eggermont, P.P., Gordon, D.: Strong underrelaxation in kaczmarz’s method for inconsistent systems. Numer Math 41(1), 83–92 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Censor, Y., Elfving, T.: Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem. SIAM J. Matrix Anal. Appl. 24(1), 40–58 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Censor, Y., Elfving, T., Herman, G.T., Nikazad, T.: On diagonally relaxed orthogonal projection methods. SIAM J. Sci. Comput. 30(1), 473–504 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Censor, Y., Gordon, D., Gordon, R.: BICAV: A block-iterative parallel algorithm for sparse systems with pixel-related weighting. IEEE Trans. Med. Imaging 20(10), 1050–1060 (2001)

    Article  Google Scholar 

  5. Censor, Y., Gordon, D., Gordon, R.: Component averaging: An efficient iterative parallel algorithm for large and sparse unstructured problems. Parallel Comput. 27(6), 777–808 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cimmino, G., delle Ricerche, C.N.: Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. Istituto per le applicazioni del calcolo (1938)

  7. Davidi, R., Herman, G.T., Klukowska, J.: Snark09: A Programming System for the Reconstruction of 2D Images from 1D Projections. The CUNY Institute for Software Design and Development, New York (2009)

  8. Eggermont, P.P.B., Herman, G.T., Lent, A.: Iterative algorithms for large partitioned linear systems, with applications to image reconstruction. Linear Algebra Appl. 40, 37–67 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elfving, T., Hansen, P.C., Nikazad, T.: Semiconvergence and relaxation parameters for projected SIRT algorithms. SIAM J. Sci. Comput. 34(4), A2000–A2017 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elfving, T., Hansen, P.C., Nikazad, T.: Semi-convergence properties of Kaczmarz’s method. Inverse Prob. 30(5), 055,007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Elfving, T., Nikazad, T.: Properties of a class of block-iterative methods. Inverse Prob. 25(11), 115,011 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elfving, T., Nikazad, T., Hansen, P.C.: Semi-convergence and relaxation parameters for a class of SIRT algorithms. Electron. Trans. Numer. Anal. 37, 321–336 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Hansen, P.C., Saxild-Hansen, M.: AIR tools-a MATLAB package of algebraic iterative reconstruction methods. J. Comput. Appl. Math. 236(8), 2167–2178 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections. Springer Science & Business Media (2009)

  15. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and its Applications. Springer Science & Business Media (2008)

  16. Jiang, M., Wang, G.: Convergence studies on iterative algorithms for image reconstruction. IEEE Trans. Med. Imaging 22(5), 569–579 (2003)

    Article  Google Scholar 

  17. Landweber, L.: An iteration formula for Fredholm integral equations of the first kind. Am. J. Math. 615–624 (1951)

  18. Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986)

    MATH  Google Scholar 

  19. Sørensen, H.H.B., Hansen, P.C.: Multicore performance of block algebraic iterative reconstruction methods. SIAM J. Sci. Comput. 36(5), C524–C546 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tanabe, K.: Projection method for solving a singular system of linear equations and its applications. Numer. Math. 17(3), 203–214 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nikazad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikazad, T., Karimpour, M. Controlling noise error in block iterative methods. Numer Algor 73, 907–925 (2016). https://doi.org/10.1007/s11075-016-0122-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0122-y

Keywords

Mathematics Subject Classification (2010)

Navigation