Skip to main content
Log in

Spectral collocation solutions to systems of boundary layer type

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Three spectral collocation methods, namely Laguerre collocation (LC), Laguerre Gauss Radau collocation (LGRC) and mapped Chebyshev collocation (ChC) are used in order to solve some challenging systems of boundary layer problems of third and second orders. The last two methods enable a Fourier type analysis, mainly (fast) polynomial transformations, which can be used in order to improve the process of optimization of the scaling parameters. Generally, the second method mentioned above produces the best results. Unfortunately they remain sub geometric with respect to the accuracy. However, all methods avoid domain truncation and rather arbitrary shooting techniques. Some challenging problems from fluid mechanics, including non-newtonian fluids are accurately solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Benacchio, T., Bonaventura, L.: Absorbing boundary conditions: a spectral collocation approach. Int. J. Numer. Meth. Fluids (2013). doi:10.1002/fld.3768

    MathSciNet  Google Scholar 

  2. Bernardy, C, Maday, Y. In: Ciarlet, P., Lions, J.L. (eds.) : Spectral methods, vol. 5 (Part 2). North-Holland (1997)

  3. Boyd, J.P.: Chebyshev and fourier spectral methods. Dover Publications, New-York (2000)

    Google Scholar 

  4. Boyd, J.P., Rangan, C., Bucksbaum, P.H.: Pseudospectral methods on a semi-infinite interval with applications to the hydrogen atom: a comparison of the mapped Fourier-sine method with Laguerre series and rational Chebyshev expansions. J. Comput. Phys. 188, 56–74 (2003)

    Article  MATH  Google Scholar 

  5. Boyd, J.P.: Chebyshev spectral methods and the lane-emden problem. Numer. Math. Theor. Meth. Appl. 4, 142–157 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Dragomirescu, I.F., Gheorghiu, C.I.: Analytical and numerical solutions to an electrohydrodynamic stability problem. Appl. Math. Comput. 216, 3718–3727 (2010). doi:10.1016/j.amc.2010.05.028

    MathSciNet  MATH  Google Scholar 

  7. Fazio, R.: A novel approach to the numerical solution of boundary value problems on infinite intervals. SIAM J. Numer. Anal. 33, 1473–1483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gheorghiu, C.I.: Spectral methods for differential problems. Casa Cartii de Stiinta Publishing House, Cluj-Napoca, Romania (2007)

    MATH  Google Scholar 

  9. Gheorghiu, C.I., Dragomirescu, I.F.: Spectral methods in linear stability. Application to thermal convection with variable gravity field. Appl. Numer. Math 59, 1290–1302 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gheorghiu, C.I., Hochstenbach, M.E., Plestenjak, B., Rommes, J.: Spectral collocation solutions to multiparameter Mathieu’s system. Appl. Math. Comput 218, 11990–12000 (2012). doi:10.1016/j.acm.2012.05.068

    MathSciNet  MATH  Google Scholar 

  11. Gheorghiu, C.I.: Laguerre collocation solutions to boundary layer type problems. Numer. Algor 64, 385–401 (2013). doi:10.1007/s11075-012-9670-y

    Article  MathSciNet  MATH  Google Scholar 

  12. Gheorghiu, C.I.: Pseudospectral solutions to some singular nonlinear BVPs. Applications in nonlinear mechanics. Numer. Algor. 68, 1–14 (2015). doi:10.1007/s11075-014-9834-z

    Article  MathSciNet  MATH  Google Scholar 

  13. Gheorghiu, C.I.: Spectral Methods for Non-Standard Eigenvalue Problems. Fluid and Structural Mechanics and Beyond. Springer Cham Heidelberg New York Dordrecht London (2014)

    Book  MATH  Google Scholar 

  14. Gottlieb, D., Orszag, S.A.: Numerical analysis of spectral methods: theory and applications. SIAM, Philadelphia (1977)

    Book  MATH  Google Scholar 

  15. Hoepffner, J.: Implementation of boundary conditions. http://www.lmm.jussieu.fr/~hoepffner/research/realizing.pdf, Accessed 2 Feb 2015 (2010)

  16. Iacono, R., Boyd, J.P.: The Kidder Equation: \(u_{xx}+2xu_{x}/\sqrt {1-\alpha u}=0\). Stud. Appl. Math. 135, 63–85 (2014)

    Article  MathSciNet  Google Scholar 

  17. Liao, S-J.: A challenging nonlinear problem for numerical techniques. J. Comput. Appl. Math. 181, 467–472 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liao, S-J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate. Int. J. Heat Mass Transfer 48, 2529–2539 (2005)

    Article  MATH  Google Scholar 

  19. Liao, S-J.: A new branch of solutions of boundary-layer flows over a permeable stretching plate. Int. J. Nonlinear Mech. 42, 819–830 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Magyari, E., Keller, B.: Heat transfer characteristics of the separation boundary flow induced by a continuous stretching surface. J. Phys. D: Appl. Phys. 32, 2876–2881 (1999)

    Article  Google Scholar 

  21. Magyari, E., Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. Eur. J. Mech. B - Fluids 19, 109–122 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mandelzweig, V. B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with applications to nonlinear ODEs. Comput. Phys. Commun. 141, 268–281 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ockendon, H., Ockendon, J.R.: Viscous flow. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  24. O’Neil, M.E., Chorlton, F.: Viscous and compressible fluid dynamics, p 395. Wiley, New York (1989)

    MATH  Google Scholar 

  25. Pantokratoras, A., Fang, T.: Blasius flow with non-linear Rosseland thermal radiation. Meccanica 49, 1539–1545 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Plestenjak, B., Gheorghiu, C.I., Hochstenbach, M.E.: Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems. J. Comput. Phys. 298, 585–601 (2015). doi:10.1016/j.jcp.2015.06.015

    Article  MathSciNet  Google Scholar 

  27. Rosales-Vera, M., Valencia, A.: Solutions of Falkner-Skan equation with heat transfer by Fourier series. Int. Commun. Heat Mass 37, 761–765 (2010)

    Article  Google Scholar 

  28. Shen, J., Tang, T., Wang, L-L.: Spectral methods. Algorithms, analysis and applications. Springer, Berlin (2011)

    MATH  Google Scholar 

  29. Wang, L.-L.: Discrete transform of Laguerre function approach. http://www.ntu.edu.sg/home/lilian/book.htm, Accessed 5 May 2014 (2011)

  30. Weideman, J.A.C., Reddy, S.C.: A MATLAB differentiation matrix suite. ACM Trans. Math. Software 26, 465–519 (2000)

    Article  MathSciNet  Google Scholar 

  31. von Winckel, G.: Fast Chebyshev Transform. http://www.mathworks.com/matlabcentral/fileexchange/4591-fast-chebyshev-transform--1d-, Accessed 15 May 2015 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Călin-Ioan Gheorghiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheorghiu, CI. Spectral collocation solutions to systems of boundary layer type. Numer Algor 73, 1–14 (2016). https://doi.org/10.1007/s11075-015-0083-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0083-6

Keywords

Navigation