Skip to main content
Log in

Large-scale Stein and Lyapunov equations, Smith method, and applications

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider the solution of large-scale Lyapunov and Stein equations. For Stein equations, the well-known Smith method will be adapted, with \(A_k = A^{2^k}\) not explicitly computed but in the recursive form \(A_k = A_{k-1}^{2}\), and the fast growing but diminishing components in the approximate solutions truncated. Lyapunov equations will be first treated with the Cayley transform before the Smith method is applied. For algebraic equations with numerically low-ranked solutions of dimension n, the resulting algorithms are of an efficient O(n) computational complexity and memory requirement per iteration and converge essentially quadratically. An application in the estimation of a lower bound of the condition number for continuous-time algebraic Riccati equations is presented, as well as some numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. SIAM Publications, Philadelphia, PA (2005)

    Book  MATH  Google Scholar 

  2. Benner, P.: Solving large-scale control problems. IEEE Control Syst. Mag. 14, 44–59 (2004)

    Article  Google Scholar 

  3. Benner, P.: Editorial of special issue on “Large-Scale Matrix Equations of Special Type”. Numer. Linear Algebra Appl. 15, 747–754 (2008)

    Article  MathSciNet  Google Scholar 

  4. Benner, P., Ezzatti, P., Kressner, D., Quintana-Orti, E.S., Remón, A.: A mixed-precision algorithm for the solution of Lyapunov equations on hybrid CPU–GPU platforms. Parallel Comput. 37, 439–450 (2011). doi:10.1016/j.parco.2010.12.002

    Article  MathSciNet  MATH  Google Scholar 

  5. Benner, P., Li, J.-R., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati equations and linear-quadratic control problems. Numer. Linear Algebra Appl. 15, 755–777 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benner, P., Li, R.-C., Truhar, N.: On the ADI method for Sylvester equations. J. Comput. Appl. Math. 233, 1035–1045 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benner, P., Mehrmann, V., Sorensen, D. (eds.): Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45. Springer, Berlin/Heidelberg (2005)

    Google Scholar 

  8. Benner, P., Fassbender, H.: On the numerical solution of large-scale sparse discrete-time Riccati equations. Adv. Comput. Math. 35, 119–147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benner, P., Saak, J.: A semi-discretized heat transfer model for optimal cooling of steel profiles. In: Benner, P., Mehrmann, V., Sorensen, D.C. (eds.) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45, pp. 353–356. Springer, Berlin/Heidelberg (2005)

    Chapter  Google Scholar 

  10. Chu, E.K.-W., Fan, H.-Y., Lin, W.-W.: A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations. Linear Algebra Appl. 396, 55–80 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Damm, T.: Direct methods and ADI-pre-conditioned Krylov subspace methods for generalized Lyapunov equations. Numer. Linear Algebra Appl. 15, 853–871 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. Johns Hopkins University Press, Baltimore, MD (1989)

    MATH  Google Scholar 

  13. Gugercin, S., Sorensen, D.C., Antoulas, A.C.: A modified low-rank Smith method for large-scale Lyapunov equations. Numer. Algor. 32 27–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jaimoukha, I.M., Kasenally, E.M.: Krylov subspace methods for solving large Lyapunov equations. SIAM J. Numer. Anal. 31, 227–251 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jbilou, K.: Block Krylov subspace methods for large continuous-time algebraic Riccati equations. Numer. Algor. 34, 339–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jbilou, K.: An Arnoldi based algorithm for large algebraic Riccati equations. Appl. Math. Lett. 19, 437–444 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jbilou, K.: Low rank approximate solutions to large Sylvester matrix equations. Appl. Math. Comput. 177, 365–376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jbilou, K.: ADI preconditioned Krylov methods for large Lyapunov matrix equations. Linear Algebra Appl. 432, 2473–2485 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jbilou, K., Riquet, A.: Projection methods for large Lyapunov matrix equations. Linear Algebra Appl. 415, 344–358 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kenney, C., Hewer, G.: The sensitivity of the algebraic and differential Riccati equations. SIAM J. Control Optim. 28, 50–69 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kressner, D.: Memory-efficient Krylov subspace techniques for solving large-scale Lyapunov equations. In: IEEE Int. Symp. Computer-Aided Control Systems Design, San Antonio, pp. 613–618 (2008)

  22. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories; I. Abstract Parabolic Systems. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  23. Li, J.-R., White, J.: Low-rank solution of Lyapunov equations. SIAM Rev. 46, 693–713 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. mathworks: MATLAB User’s Guide (2010)

  25. Sadkane, M.: A low-rank Krylov squared Smith method for large-scale discrete-time Lyapunov equations. Linear Algebra Appl. (2011). doi:10.1016/j.laa.2011.07.021

  26. Saak, J.: Efficient numerical solution of large scale algebraic matrix equations in PDE control and model order reduction. Dr. rer. nat. Dissertation, Chemnitz University of Technology, Germany (2009)

    Google Scholar 

  27. Saak, J., Mena, H., Benner, P.: Matrix Equation Sparse Solvers (MESS): A Matlab Toolbox for the Solution of Sparse Large-Scale Matrix Equations. Chemnitz University of Technology, Germany (2010)

    Google Scholar 

  28. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29, 1268–1288 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Smith, R.A.: Matrix equation XA + BX = C. SIAM J. Appl. Math. 16, 198–201 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  30. Truhar, N., Li, R.-C.: On ADI method for Sylvester equations. Technical Report 2008-02, Department of Mathematics, University of Texas at Arlington (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric King-wah Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Weng, P.CY., Chu, E.Kw. et al. Large-scale Stein and Lyapunov equations, Smith method, and applications. Numer Algor 63, 727–752 (2013). https://doi.org/10.1007/s11075-012-9650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9650-2

Keywords

Mathematics Subject Classifications (2010)

Navigation