Skip to main content
Log in

Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The solution of large-scale Lyapunov equations is a crucial problem for several fields of modern applied mathematics. The low-rank Cholesky factor version of the alternating directions implicit method (LRCF-ADI) is one iterative algorithm that computes approximate low-rank factors of the solution. In order to achieve fast convergence it requires adequate shift parameters, which can be complex if the matrices defining the Lyapunov equation are unsymmetric. This will require complex arithmetic computations as well as storage of complex data and thus, increase the overall complexity and memory requirements of the method. In this article we propose a novel reformulation of LRCF-ADI which generates real low-rank factors by carefully exploiting the dependencies of the iterates with respect to pairs of complex conjugate shift parameters. It significantly reduces the amount of complex arithmetic calculations and requirements for complex storage. It is hence often superior in terms of efficiency compared to other real formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Banks, H., Ito, K.: A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems. SIAM J. Control Optim. 29(3), 499–515 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartels, R., Stewart, G.: Solution of the matrix equation AX + XB = C: algorithm 432. Commun. ACM 15, 820–826 (1972)

    Article  Google Scholar 

  3. Benner, P.: Solving large-scale control problems. IEEE Control Syst. Mag. 14(1), 44–59 (2004)

    Article  MathSciNet  Google Scholar 

  4. Benner, P., Faßbender, H.: On the numerical solution of large-scale sparse discrete-time Riccati equations. Adv. Comput. Math. 35, 119–147 (2011). doi:10.1007/s10444-011-9174-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Benner, P., Kürschner, P., Saak, J.: Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method. Max Planck Institute Magdeburg Preprints MPIMD/11-08 (2011). http://www.mpi-magdeburg.mpg.de/preprints/

  6. Benner, P., Li, J.R., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. Numer. Linear Algebr. Appl. 15(9), 755–777 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benner, P., Li, R., Truhar, N.: On the ADI method for Sylvester equations. J. Comput. Appl. Math. 233, 1035–1045 (2009). doi:10.1016/j.cam.2009.08.108. http://dl.acm.org/citation.cfm?id=1631886.1632100

    Article  MathSciNet  MATH  Google Scholar 

  8. Benner, P., Mena, H.: BDF methods for large-scale differential Riccati equations. In: De Moor, B., Motmans, B., Willems, J., Van Dooren, P., Blondel, V. (eds.) Proc. 16th Intl. Symp. Mathematical Theory of Network and Systems, MTNS 2004 (2004). 12 pp. Available at http://www.mtns2004.be

  9. Benner, P., Mena, H.: Rosenbrock methods for solving differential Riccati equations. Tech. Rep. MPIMD/11-06, Max Planck Institute Magdeburg Preprints (2011)

  10. Benner, P., Quintana-Ortí, E.: Solving stable generalized Lyapunov equations with the matrix sign function. Numer. Algorithms 20(1), 75–100 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benner, P., Saak, J.: A Galerkin-Newton-ADI method for solving large-scale algebraic Riccati equations. Preprint SPP1253-090, SPP1253 (2010). http://www.am.uni-erlangen.de/home/spp1253/wiki/index.php/Preprints

  12. Benner, P., Saak, J.: Efficient balancing based MOR for large scale second order systems. Math. Comput. Model. Dyn. Syst. 17(2), 123–143 (2011). doi:10.1080/13873954.2010.540822

    Article  MathSciNet  MATH  Google Scholar 

  13. Bischof, C.H., Quintana-Ortí, G.: Algorithm 782: codes for rank-revealing QR factorizations of dense matrices. ACM Trans. Math. Softw. 24(2), 254–257 (1998)

    Article  MATH  Google Scholar 

  14. Davis, T.A.: Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2). SIAM, Philadelphia (2006)

    Book  Google Scholar 

  15. Duff, I., Erisman, A., Reid, J.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1989)

    MATH  Google Scholar 

  16. Freitas, F., Rommes, J., Martins, N.: Gramian-based reduction method applied to large sparse power system descriptor models. IEEE Trans. Power Syst. 23(3), 1258–1270 (2008)

    Article  Google Scholar 

  17. Gajić, Z., Qureshi, M.: Lyapunov Matrix Equation in System Stability and Control. Math. in Science and Engineering. Academic Press, San Diego (1995)

    Google Scholar 

  18. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  19. Grasedyck, L.: Existence of a low rank or H-matrix approximant to the solution of a Sylvester equation. Numer. Linear Algebr. Appl. 11, 371–389 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hammarling, S.: Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J. Numer. Anal. 2, 303–323 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kleinman, D.: On an iterative technique for Riccati equation computations. IEEE Trans. Automat. Contr. AC-13, 114–115 (1968)

    Article  Google Scholar 

  22. Li, J.R., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24(1), 260–280 (2002)

    Article  MathSciNet  Google Scholar 

  23. Martins, N., Lima, L., Pinto, H.: Computing dominant poles of power system transfer functions. IEEE Trans. Power Syst. 11(1), 162–170 (1996). doi:10.1109/59.486093

    Article  Google Scholar 

  24. Mehrmann, V., Stykel, T.: Balanced truncation model reduction for large-scale systems in descriptor form. In: Benner, P., Mehrmann, V., Sorensen, D. (eds.) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45, pp. 83–115. Springer, Berlin (2005)

    Chapter  Google Scholar 

  25. Moore, B.C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Automat. Contr. AC-26(1), 17–32 (1981)

    Article  MATH  Google Scholar 

  26. Penzl, T.: A cyclic low rank Smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput. 21(4), 1401–1418 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Penzl, T.: Lyapack users guide. Tech. Rep. SFB393/00-33, Sonderforschungsbereich 393 Numerische Simulation auf massiv parallelen Rechnern, TU Chemnitz, 09107 Chemnitz, Germany (2000). Available from http://www.tu-chemnitz.de/sfb393/sfb00pr.html

  28. Roberts, J.: Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int. J. Control 32, 677–687 (1980) (Reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department, 1971)

    Article  MATH  Google Scholar 

  29. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  30. Saak, J.: Efficient numerical solution of large scale algebraic matrix equations in pde control and model order reduction. Ph.D. thesis, TU Chemnitz (2009). Available from http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901642

  31. Sabino, J.: Solution of large-scale Lyapunov equations via the block modified Smith method. Ph.D. thesis, Rice University, Houston, Texas (2007). Available from: http://www.caam.rice.edu/tech_reports/2006/TR06-08.pdf

  32. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29(3), 1268–1288 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sorensen, D., Zhou, Y.: Bounds on eigenvalue decay rates and sensitivity of solutions to Lyapunov equations. Tech. Rep. TR02-07, Dept. of Comp. Appl. Math., Rice University, Houston, TX (2002). Available online from http://www.caam.rice.edu/caam/trs/tr02.html

  34. Sorensen, D., Zhou, Y.: Direct methods for matrix Sylvester and Lyapunov equations. J. Appl. Math 2003, 277–303 (2002)

    Article  MathSciNet  Google Scholar 

  35. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Truhar, N., Veselić, K.: Bounds on the trace of a solution to the Lyapunov equation with a general stable matrix. Syst. Control Lett. 56(7–8), 493–503 (2007). doi:10.1016/j.sysconle.2007.02.003. http://www.sciencedirect.com/science/article/pii/S0167691107000217

    Article  MATH  Google Scholar 

  37. Truhar, N., Veselic, K.: An efficient method for estimating the optimal dampers’ viscosity for linear vibrating systems using Lyapunov equation. SIAM J. Matrix Anal. Appl. 31(1), 18–39 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  39. Wachspress, E.: Iterative solution of the Lyapunov matrix equation. Appl. Math. Lett. 107, 87–90 (1988)

    Article  MathSciNet  Google Scholar 

  40. Wachspress, E.: The ADI Model Problem. E.L. Wachspress, Windsor, CA (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Kürschner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benner, P., Kürschner, P. & Saak, J. Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method. Numer Algor 62, 225–251 (2013). https://doi.org/10.1007/s11075-012-9569-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9569-7

Keywords

Navigation