Skip to main content
Log in

Implicit QR algorithms for palindromic and even eigenvalue problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the spirit of the Hamiltonian QR algorithm and other bidirectional chasing algorithms, a structure-preserving variant of the implicit QR algorithm for palindromic eigenvalue problems is proposed. This new palindromic QR algorithm is strongly backward stable and requires less operations than the standard QZ algorithm, but is restricted to matrix classes where a preliminary reduction to structured Hessenberg form can be performed. By an extension of the implicit Q theorem, the palindromic QR algorithm is shown to be equivalent to a previously developed explicit version. Also, the classical convergence theory for the QR algorithm can be extended to prove local quadratic convergence. We briefly demonstrate how even eigenvalue problems can be addressed by similar techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Z., Demmel, J.W.: On swapping diagonal blocks in real Schur form. Linear Algebra Appl. 186, 73–95 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. I. Maintaining well-focused shifts and level 3 performance. SIAM J. Matrix Anal. Appl. 23(4), 929–947 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. II. Aggressive early deflation. SIAM J. Matrix Anal. Appl. 23(4), 948–973 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Byers, R.: A hamiltonian QR algorithm. SIAM J. Sci. Statist. Comput. 7(1), 212–229 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Byers, R., Kressner, D.: Structured condition numbers for invariant subspaces. SIAM J. Matrix Anal. Appl. 28(2), 326–347 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chu, E.K.-W., Hwang, T.-M., Lin, W.-W., Wu, C.-T.: Vibration of Fast Trains, Palindromic Eigenvalue Problems and Structure-Preserving Doubling Algorithms. Technical report, School of Mathematical Sciences, Monash University, Australia, January (2007)

  7. Elsner, L., Sun, J.-G.: Perturbation theorems for the generalized eigenvalue problem. Linear Algebra Appl. 48, 341–357 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  9. Hilliges, A., Mehl, C., Mehrmann, V.: On the solution of palindromic eigenvalue problems. In: Proceedings of the 4th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS). Jyväskylä, Finland, CD-ROM (2004)

  10. Horn, R.A., Sergeichuk, V.V.: Canonical forms for complex matrix congruence and *congruence. Linear Algebra Appl. 416(2–3), 1010–1032 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Horn, R.A., Sergeichuk, V.V.: A regularization algorithm for matrices of bilinear and sesquilinear forms. Linear Algebra Appl. 412(2–3), 380–395 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kågström, B., Kressner, D.: Multishift variants of the QZ algorithm with aggressive early deflation. SIAM J. Matrix Anal. Appl. 29(1), 199–227 (2006–2007)

    Article  Google Scholar 

  13. Kågström, B., Poromaa, P.: Computing eigenspaces with specified eigenvalues of a regular matrix pair (A,B) and condition estimation: theory, algorithms and software. Numer. Algorithms 12(3–4), 369–407 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kressner, D.: Numerical methods for general and structured eigenvalue problems. Lecture Notes in Computational Science and Engineering, vol. 46. Springer, Berlin (2005)

    MATH  Google Scholar 

  15. Kressner, D., Peláez, M.J., Moro, J.: Structured Hölder condition numbers for multiple eigenvalues. Uminf report, Department of Computing Science, Umea University, Sweden, October (2006)

  16. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28(4), 1029–1051 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Numerical methods for palindromic eigenvalue problems: computing the anti-triangular Schur form. Technical Report 409, DFG Research Center Matheon, Mathematics for key technologies in Berlin, TU Berlin, Str. des 17. Juni 136, D-10623 Berlin, Germany. http://www.matheon.de (2007, to appear in Numer. Linear Algebra Appl.)

  18. Mehl, C.: On asymptotic convergence of nonsymmetric Jacobi algorithms. Preprint 393, Matheon - DFG Research Center Mathematics for key techonolgies, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, FRG. SIAM J. Matrix Anal. Appl. 30, 291–311 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mehrmann, V.: A symplectic orthogonal method for single input or single output discrete time optimal quadratic control problems. SIAM J. Matrix Anal. Appl. 9(2), 221–247 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Penzl, T.: Lyapack users guide. Technical report SFB393/00-33, Sonderforschungsbereich 393 Numerische Simulation auf massiv parallelen Rechnern, TU Chemnitz, 09107 Chemnitz, FRG (2000)

  21. Rodman, L.: Bounded and stably bounded palindromic difference equations of first order. Electron. J. Linear Algebra 15, 22–49 (2006)

    MATH  MathSciNet  Google Scholar 

  22. Rump, S.M.: Eigenvalues, pseudospectrum and structured perturbations. Linear Algebra Appl. 413(2–3), 567–593 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schröder, C.: A canonical form for palindromic pencils and palindromic factorizations. Preprint 316, TU Berlin, Matheon, Germany (2006)

  24. Schröder, C.: A QR-like algorithm for the palindromic eigenvalue problem. Preprint 388, TU Berlin, Matheon, Germany (2007)

  25. Schröder, C.: URV decomposition based structured methods for palindromic and even eigenvalue problems. Preprint 375, TU Berlin, Matheon, Germany, March (2007, submitted)

  26. Schröder, C.: Palindromic and even eigenvalue problems—analysis and numerical methods. Ph.D. thesis, Technical University Berlin, Germany (2008)

  27. Stewart, G.W.: On the sensitivity of the eigenvalue problem Ax = λBx. SIAM J. Numer. Anal. 9, 669–686 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stewart, G.W., Sun, J.-G.: Matrix Perturbation Theory. Computer Science and Scientific Computing. Academic, Boston (1990)

    Google Scholar 

  29. Thompson, R.C.: The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil. Linear Algebra Appl. 14, 135–177 (1976)

    Article  MATH  Google Scholar 

  30. Thompson, R.C.: Pencils of complex and real symmetric and skew matrices. Linear Algebra Appl. 147, 323–371 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Watkins, D.S.: QR-like algorithms—an overview of convergence theory and practice. In: The Mathematics of Numerical Analysis (Park City, UT, 1995). Lectures in Appl. Math, vol. 32, pp. 879–893. American Mathematical Society, Providence (1996)

    Google Scholar 

  32. Watkins, D.S.: The transmission of shifts and shift blurring in the QR algorithm. Linear Algebra Appl. 241–243, 877–896 (1996)

    Article  MathSciNet  Google Scholar 

  33. Watkins, D.S.: The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods. SIAM, Philadelphia (2007)

    MATH  Google Scholar 

  34. Watkins, D.S., Elsner, L.: Convergence of algorithms of decomposition type for the eigenvalue problem. Linear Algebra Appl. 143, 19–47 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  35. Watkins, D.S., Elsner, L.: Theory of decomposition and bulge-chasing algorithms for the generalized eigenvalue problem. SIAM J. Matrix Anal. Appl. 15(3), 943–967 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Monographs on Numerical Analysis. Oxford Science, Clarendon, Oxford (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schröder.

Additional information

C. Schröder supported by Deutsche Forschungsgemeinschaft through Matheon, the DFG Research Center Mathematics for key technologies in Berlin.

D. S. Watkins partly supported by Deutsche Forschungsgemeinschaft through Matheon, the DFG Research Center Mathematics for key technologies in Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kressner, D., Schröder, C. & Watkins, D.S. Implicit QR algorithms for palindromic and even eigenvalue problems. Numer Algor 51, 209–238 (2009). https://doi.org/10.1007/s11075-008-9226-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9226-3

Keywords

Mathematics Subject Classifications (2000)

Navigation