Skip to main content
Log in

Analytical approach for nonlinear vibration response of the thin cylindrical shell with a straight crack

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Thin cylindrical shells are susceptible to cracking under long-term load and external impact, and it is of considerable scientific and technical value to investigate the nonlinear vibration response characteristics and monitor the health condition of the shell structure. Based on the Flügge shell theory, the nonlinear dynamic model for the thin cylindrical shell is established. By the partial Fourier transform combined with the residue theorem, the forced vibration generation and propagation mechanism of the thin cylindrical shell are investigated, and the analytical solution of forced vibration displacement in the space domain is obtained. Then, the local flexibility matrix is derived from the perspective of fracture mechanics, and the continuous coordination condition on both sides of the straight crack is constructed using the linear spring model. Combined with the wave superposition principle, the analytical approach for nonlinear vibration response is proposed to reveal the evolution law of vibration characteristics of the thin cylindrical shell with a straight crack, and then, a straight crack identification method based on natural frequency isolines and amplitude maximization methods is presented. Finally, the effect of various morphological information of the straight crack on the nonlinear vibration response characteristics of the thin cylindrical shell is studied in detail, and a numerical case is conducted to verify the effectiveness of the proposed straight crack identification method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Shi, L., Shuai, J., Wang, X.L., Xu, K.: Experimental and numerical investigation of stress in a large-scale steel tank with a floating roof. Thin. Wall Struct. 117, 25–34 (2017). https://doi.org/10.1016/j.tws.2017.03.037

    Article  Google Scholar 

  2. Lv, H.P., Zhang, L.B., Tan, D.P., Xu, F..: A collaborative assembly for low-voltage electrical apparatuses. Front. Inform. Tech. El. (2022). https://doi.org/10.1631/FITEE.2100423

    Article  Google Scholar 

  3. Sheng, S.S., Wang, X.: The nonlinear vibrations of rotating functionally graded cylindrical shells. Nonlinear Dyn. 87(2), 1095–1109 (2017). https://doi.org/10.1007/s11071-016-3100-y

    Article  Google Scholar 

  4. Mehditabar, A., Rahimi, G.H., Fard, K.: Vibrational responses of antisymmetric angle-ply laminated conical shell by the methods of polynomial based differential quadrature and Fourier expansion based differential quadrature. Appl. Math. Comput. 320, 580–595 (2018). https://doi.org/10.1016/j.amc.2017.10.017

    Article  MathSciNet  MATH  Google Scholar 

  5. Sun, S.P., Liu, L.: Multiple internal resonances in nonlinear vibrations of rotating thin-walled cylindrical shells. J. Sound Vib. 510, 116313 (2021). https://doi.org/10.1016/j.jsv.2021.116313

    Article  Google Scholar 

  6. Li, L., Gu, Z.H., Xu, W.X., Tan, Y.F., Fan, X.H., Tan, D.P.: Mixing mass transfer mechanism and dynamic control of gas–liquid–solid multiphase flow based on VOF-DEM coupling. Energy (2023). https://doi.org/10.1016/j.energy.2023.127015

    Article  Google Scholar 

  7. Xu, Z.D., Liao, Y.X., Ge, T., Xu, C.: Experimental and theoretical study of viscoelastic dampers with different matrix rubbers. J. Eng. Mech. 142(8), 04016051 (2016). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001101

    Article  Google Scholar 

  8. Yin, Z.C., Ni, Y.S., Li, L., Wang, T., Wu, J.F., Li, Z., Tan, D.P.: Numerical modelling and experiment investigation for two-phase sink vortex and its fluid-solid vibration characters. J. Zhejiang Univ.-SCI A (2023). https://doi.org/10.1631/jzus.A2200014

    Article  Google Scholar 

  9. Wilhelm, F.: Stresses in Shells, 2nd edn. Springer, Berlin (1973)

    MATH  Google Scholar 

  10. Fuller, C.R.: The effects of wall discontinuities on the propagation of flexural waves in cylindrical-shells. J. Sound Vib. 75(2), 207–228 (1981). https://doi.org/10.1016/0022-460X(81)90340-0

    Article  Google Scholar 

  11. Sorokin, S., Manconi, E., Ledet, L., Garziera, R.: Wave propagation in helically orthotropic elastic cylindrical shells and lattices. Int. J. Solids Struct. 170, 11–21 (2019). https://doi.org/10.1016/j.ijsolstr.2019.04.031

    Article  Google Scholar 

  12. Wang, Z.Q., Li, X.B., Huang, L.H.: Vibration characteristics of orthotropic circular cylindrical shells based on wave propagation approach and multi-variate analysis. J. Vib. Shock 37(7), 227–232 (2018)

    Google Scholar 

  13. Arbind, A., Reddy, J.N., Srinivasa, A.R.: A general higher-order shell theory for compressible isotropic hyperelastic materials using orthonormal moving frame. Int. J. Numer. Meth. Eng. 122, 235–269 (2021). https://doi.org/10.1002/nme.6536

    Article  MathSciNet  Google Scholar 

  14. Zhang, G.J., Li, T.Y., Zhu, X., Yang, J., Miao, Y.Y.: Free and forced vibration characteristics of submerged finite elliptic cylindrical shell. Ocean Eng. 129, 92–106 (2017). https://doi.org/10.1016/j.oceaneng.2016.11.014

    Article  Google Scholar 

  15. Guo, W.J., Li, T.Y., Zhu, X., Qu, K.Y.: Semi-analytical research on acoustic-structure coupling calculation of partially submerged cylindrical shell. Acta. Phys. Sin-Ch Ed. 67(8), 084302 (2018). https://doi.org/10.7498/aps.67.20172681

    Article  Google Scholar 

  16. Liu, Y.F., Qiu, Z.Y., Chu, F.L.: Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate. Nonlinear Dyn. 104, 1007–1021 (2021). https://doi.org/10.1007/s11071-021-06358-7

    Article  Google Scholar 

  17. Amabili, M., Balasubramanian, P.: Nonlinear vibrations of truncated conical shells considering multiple internal resonances. Nonlinear Dyn. 100, 77–93 (2020). https://doi.org/10.1007/s11071-020-05507-8

    Article  Google Scholar 

  18. Xu, Z.D., Huang, X.H., Xu, F.H., Yuan, J.: Parameters optimization of vibration isolation and mitigation system for precision platforms using non-dominated sorting genetic algorithm. Mech. Syst. Signal Pr. 128, 191–201 (2019). https://doi.org/10.1016/j.ymssp.2019.03.031

    Article  Google Scholar 

  19. Xu, Z.D., Xu, F.H., Chen, X.: Vibration suppression on a platform by using vibration isolation and mitigation devices. Nonlinear Dyn. 83(3), 1341–1353 (2016). https://doi.org/10.1007/s11071-015-2407-4

    Article  Google Scholar 

  20. Brevart, B.J., Fuller, C.R.: Effect of an internal flow on the distribution of vibrational-energy in an infinite fluid-filled thin cylindrical elastic shell. J. Sound Vib. 167(1), 149–163 (1993). https://doi.org/10.1006/jsvi.1993.1326

    Article  MATH  Google Scholar 

  21. Song, X.Y., Cao, T.N., Gao, P.X., Han, Q.K.: Vibration and damping analysis of cylindrical shell treated with viscoelastic damping materials under elastic boundary conditions via a unified Rayleigh–Ritz method. Int. J. Mech. Sci. 165, 105158 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105158

    Article  Google Scholar 

  22. Yan, J., Li, F.C., Li, T.Y.: Vibrational power flow analysis of a submerged viscoelastic cylindrical shell with wave propagation approach. J. Sound Vib. 303(1–2), 264–276 (2007). https://doi.org/10.1016/j.jsv.2007.01.014

    Article  Google Scholar 

  23. Mostofizadeh, S., Fagerstrom, M., Larsson, R.: Dynamic crack propagation in elastoplastic thin-walled structures: modelling and validation. Int. J. Numer. Meth. Eng. 96(2), 63–86 (2013). https://doi.org/10.1002/nme.4524

    Article  MathSciNet  MATH  Google Scholar 

  24. Nikolic, A., Salinic, S.: Free vibration analysis of cracked beams by using rigid segment method. Appl. Math. Model. 84, 158–172 (2020). https://doi.org/10.1016/j.apm.2020.03.033

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, J.Z., Nguyen-Thanh, N., Gao, J.W., Fan, Z., Zhou, K.: Static, free vibration, and buckling analyses of laminated composite plates via an isogeometric meshfree collocation approach. Comput. Struct. 285, 115011 (2022). https://doi.org/10.1016/j.compstruct.2021.115011

    Article  Google Scholar 

  26. Li, W.D., Nguyen-Thanh, N., Huang, J.Z., Zhou, K.: Adaptive analysis of crack propagation in thin-shell structures via an isogeometric-meshfree moving least-squares approach. Comput. Methods Appl. Mech. Eng. 358, 112613 (2020). https://doi.org/10.1016/j.cma.2019.112613

    Article  MathSciNet  MATH  Google Scholar 

  27. Kiran, R., Nguyen-Thanh, N., Huang, J.Z., Zhou, K.: Buckling analysis of cracked orthotropic 3D plates and shells via an isogeometric-reproducing kernel particle method. Theor. Appl. Fract. Mech. 114, 102993 (2021). https://doi.org/10.1016/j.tafmec.2021.102993

    Article  Google Scholar 

  28. Naniwadekar, M.R., Naik, S.S., Maiti, S.K.: On prediction of crack in different orientations in pipe using frequency based approach. Mech. Syst. Signal Peocess. 22(3), 693–708 (2008). https://doi.org/10.1016/j.ymssp.2007.09.007

    Article  Google Scholar 

  29. Moradi, S., Tavaf, V.: Crack detection in circular cylindrical shells using differential quadrature method. Int. J. Pressure Vessel. Pip. 222, 209–216 (2013). https://doi.org/10.1016/j.ijpvp.2013.07.006

    Article  Google Scholar 

  30. Zhang, Y., Lie, S.T., Xiang, Z.H., Lu, Q.H.: A frequency shift curve based damage detection method for cylindrical shell structures. J. Sound Vib. 333(6), 1671–1683 (2014). https://doi.org/10.1016/j.jsv.2013.11.026

    Article  Google Scholar 

  31. Moazzez, K., Googarchin, H.S., Sharifi, S.M.H.: Natural frequency analysis of a cylindrical shell containing a variably oriented surface crack utilizing Line-Spring model. Thin Wall Struct. 125, 63–75 (2018). https://doi.org/10.1016/j.tws.2018.01.009

    Article  Google Scholar 

  32. Googarchin, H.S., Moazzez, K.: Analytical solution for free vibration of cracked orthotropic cylindrical shells. Int. J. Mech. Sci. 153, 254–270 (2019). https://doi.org/10.1016/j.ijmecsci.2019.02.004

    Article  Google Scholar 

  33. Pan, Z., Li, X., Ma, J.: A study on free vibration of a ring-stiffened thin circular cylindrical shell with arbitrary boundary conditions. J. Sound Vib. 314(1–2), 330–342 (2008). https://doi.org/10.1016/j.jsv.2008.01.008

    Article  Google Scholar 

  34. Fuller, C.R.: The input mobility of an infinite circular cylindrical elastic shell filled with fluid. J. Sound Vib. 87(3), 409–427 (1983). https://doi.org/10.1016/0022-460X(83)90470-4

    Article  Google Scholar 

  35. Li, L., Tan, Y.F., Xu, W.X., Ni, Y.S., Yang, J.G., Tan, D.P.: Fluid-induced transport dynamics and vibration patterns of multiphase vortex in the critical transition states. Int. J. Mech. Sci. (2023). https://doi.org/10.1016/j.ijmecsci.2023.108376

    Article  Google Scholar 

  36. Zheng, S.H., Yu, Y.K., Qiu, M.Z., Wang, L.M., Tan, D.P.: A modal analysis of vibration response of a cracked fluid-filled cylindrical shell. Appl. Math. Model. 91, 934–958 (2021). https://doi.org/10.1016/j.apm.2020.09.040

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, L., Xu, W.X., Tan, Y.F., Yang, Y.S., Yang, J.G., Tan, D.P.: Fluid-induced vibration evolution mechanism of multiphase free sink vortex and the multi-source vibration sensing method. Mech. Syst. Signal Pr 189, 110058 (2023). https://doi.org/10.1016/j.ymssp.2022.110058

    Article  Google Scholar 

  38. Nikpour, K.: Diagnosis of axisymmetric cracks in orthotropic cylindrical shells by vibration measurement. Compos. Sci. Technol. 39(1), 45–61 (1990). https://doi.org/10.1016/0266-3538(90)90032-Z

    Article  Google Scholar 

  39. Han, H.S., Liu, L., Cao, D.Q.: Analytical approach to coupled bending-torsional vibrations of cracked Timoshenko beam. Int. J. Mech. Sci. 166, 105235 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105235

    Article  Google Scholar 

  40. Yu, Z.H., Zhang, L.B., Hu, J.Q., Hu, J.S.: Cracked modeling and vibration analysis of pipe with a part-through crack. J. Vibroeng. 19(2), 930–942 (2017). https://doi.org/10.21595/jve.2016.17136

    Article  Google Scholar 

  41. Papadopoulos, C.A.: The strain energy release approach for modeling cracks in rotors: a state of the art review. Mech. Syst. Signal Process. 22(4), 763–789 (2008). https://doi.org/10.1016/j.ymssp.2007.11.009

    Article  Google Scholar 

  42. Majumdar, A., Maiti, D.K., Maity, D.: Damage assessment of truss structures from changes in natural frequencies using ant colony optimization. Appl. Math. Comput. 218(19), 9759–9772 (2012). https://doi.org/10.1016/j.amc.2012.03.031

    Article  MATH  Google Scholar 

  43. Yang, X.F., Swamidas, A.S.J., Seshadri, R.: Crack identification in vibration beams using the energy method. J. Sound Vib. 244(2), 339–357 (2001). https://doi.org/10.1016/0020-7683(94)90003-5

    Article  Google Scholar 

  44. Lam, K.Y., Loy, C.T.: Effects of boundary conditions on frequencies of a multi-layered cylindrical shell. J. Sound Vib. 188(3), 363–384 (1995). https://doi.org/10.1006/jsvi.1995.0599

    Article  Google Scholar 

  45. Tan, Y.F., Ni, Y.S., Wu, J.F., Li, L., Tan, D.P.: Machinability evolution of gas-liquid-solid three-phase rotary abrasive flow finishing. Int. J. Adv. Manuf. Technol. (2023). https://doi.org/10.1007/s00170-022-10761-8

    Article  Google Scholar 

  46. Li, L., Lu, B., Xu, W.X., Gu, Z.H., Yang, Y.S., Tan, D.P.: Mechanism of multiphase coupling transport evolution of free sink vortex. Acta. Phys. Sin. 72(3), 034702 (2023). https://doi.org/10.7498/aps.72.20221991

    Article  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China (Grant Nos. 51775501 and 52175124), Natural Science Foundation of Zhejiang province (Grant Nos. LZ21E050003 and LY17E050004) and Zhejiang Provincial Science and Technology Innovation Activity Program for College Students (New Miao Talent Program) (Grant No. 2021R403064)

Author information

Authors and Affiliations

Authors

Contributions

TW was involved in the conceptualization, methodology, software, formal analysis, validation, data curation, writing—original draft preparation, writing—review and editing. CW contributed to the validation, investigation, resources, and visualization. YY was involved in the validation, data curation, and writing—original draft preparation. YZ assisted in the formal analysis, investigation, and visualization. LL contributed to the investigation, visualization. DT was involved in the conceptualization, methodology, project administration, and funding acquisition.

Corresponding author

Correspondence to Dapeng Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The data that support the findings of this study are available from the corresponding author, Dapeng Tan, upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The detailed expressions of coefficient matrix \(\left[ {N_{3 \times 3} } \right]\) are described in the following forms.

$$ N_{11} = \lambda^{2} + n^{{2}} \left( {{1} + \beta^{{2}} } \right)\frac{{{1} - \mu }}{{2}} - \Omega^{{2}} $$
$$ N_{12} = - in\frac{1 + \mu }{2}\lambda $$
$$ N_{13} = - i\beta^{2} \lambda^{3} - \left( {i\mu - in^{2} \beta^{2} \frac{1 - \mu }{2}} \right)\lambda $$
$$ N_{21} = in\frac{1 + \mu }{2}\lambda $$
$$ N_{22} = (1 + 3\beta^{2} )\frac{1 - \mu }{2}\lambda^{2} + n^{2} - \Omega^{2} $$
$$ N_{23} = n\beta^{2} \frac{3 - \mu }{2}\lambda^{2} + n $$
$$ N_{31} = - i\beta^{2} \lambda^{3} - \left( {i\mu - in^{2} \beta^{2} \frac{1 - \mu }{2}} \right)\lambda $$
$$ N_{23} = - n\beta^{2} \frac{3 - \mu }{2}\lambda^{2} - n $$
$$ N_{33} = - 1 - \beta^{2} (n^{2} - 1)^{2} + \Omega^{2} - 2n^{2} \beta^{2} \lambda^{2} - \beta^{2} \lambda^{4} $$

Appendix B

The coefficient \(a_{i} \left( {i = 0,2,4,6,8} \right)\) of the algebraic equation in Sect. 2.1 are expressed as

$$ \begin{aligned} a_{0} & = \left( {n^{2} (1 + \beta^{2} )\frac{1 - \mu }{2} - \Omega^{2} } \right)\left( {n^{2} - \Omega^{2} } \right) \\ & \quad \left( { - 1 - \beta^{2} (n^{2} - 1)^{2} + \Omega^{2} } \right) \\ & \quad + \left( {n^{2} (1 + \beta^{2} )\frac{1 - \mu }{2} - \Omega^{2} } \right)n^{2} \\ \end{aligned} $$
$$ \begin{aligned} a_{2} & = \left( {n^{2} - \Omega^{2} + (1 + 3\beta^{2} )\frac{1 - \mu }{2}\left( {n^{2} (1 + \beta^{2} )\frac{1 - \mu }{2} - \Omega^{2} } \right)} \right) \\ & \quad \left( { - 1 - \beta^{2} (n^{2} - 1)^{2} + \Omega^{2} } \right) \\ & {\kern 1pt} \quad - 2n^{2} \beta^{2} \left( {n^{2} (1 + \beta^{2} )\frac{1 - \mu }{2} - \Omega^{2} } \right)\left( {n^{2} - \Omega^{2} } \right) \\ & \quad + 2in^{2} \frac{1 + \mu }{2}\left( {i\mu - in^{2} \beta^{2} \frac{1 - \mu }{2}} \right) \\ {\kern 1pt} & \quad - \left( {i\mu - in^{2} \beta^{2} \frac{1 - \mu }{2}} \right)^{2} \left( {n^{2} - \Omega^{2} } \right) + n^{2} \\ & \quad + 2n^{2} \beta^{2} \frac{3 - \mu }{2}\left( {n^{2} (1 + \beta^{2} )\frac{1 - \mu }{2} - \Omega^{2} } \right) \\ {\kern 1pt} & \quad -^{2} \left( { - 1 - \beta^{2} (n^{2} - 1)^{2} + \Omega^{2} } \right)\left( {n\frac{1 + \mu }{2}} \right) \\ \end{aligned} $$
$$ \begin{aligned} a_{4} & = (1 + 3\beta^{2} )\frac{1 - \mu }{2}\left( { - 1 - \beta^{2} (n^{2} - 1)^{2} + \Omega^{2} } \right) - 2n^{2} \beta^{2} (n^{2} - \Omega^{2} ) \\ & {\kern 1pt} \quad - 2n^{2} \beta^{2} (1 + 3\beta^{2} )\frac{1 - \mu }{2}\left( {n^{2} (1 + \beta^{2} )\frac{1 - \mu }{2} - \Omega^{2} } \right) \\ & \quad - \beta^{2} \left( {n^{2} - \Omega^{2} } \right)\left( {n^{2} (1 + \beta^{2} )\frac{1 - \mu }{2} - \Omega^{2} } \right) \\ & {\kern 1pt} \quad + 2in^{2} \beta^{2} \frac{3 - \mu }{2}\frac{1 + \mu }{2}\left( {i\mu - in^{2} \beta^{2} \frac{1 - \mu }{2}} \right) + 2in^{2} \frac{1 + \mu }{2}\left( {i\beta^{2} } \right) \\ & \quad + 2\beta^{2} \left( {\mu - n^{2} \beta^{2} \frac{1 - \mu }{2}} \right)\left( {n^{2} - \Omega^{2} } \right) \\ & \quad + \left( {\mu - n^{2} \beta^{2} \frac{1 - \mu }{2}} \right)^{2} \left( {(1 + 3\beta^{2} )\frac{1 - \mu }{2}} \right){\kern 1pt} + 2n^{2} \beta^{2} \frac{3 - \mu }{2} \\ & \quad + \left( {n^{2} (1 + \beta^{2} )\frac{1 - \mu }{2} - \Omega^{2} } \right)\left( {n\beta^{2} \frac{3 - \mu }{2}} \right)^{2} + 2n^{2} \beta^{2} \left( {n\frac{1 + \mu }{2}} \right)^{2} \\ \end{aligned} $$
$$ \begin{aligned} a_{6} & = - 2n^{2} \beta^{2} (1 + 3\beta^{2} )\frac{1 - \mu }{2} - \beta^{2} \left( {n^{2} - \Omega^{2} } \right) \\ & \quad + \beta^{2} (1 + 3\beta^{2} )\frac{1 - \mu }{2}\left( {n^{2} (1 + \beta^{2} )\frac{1 - \mu }{2} - \Omega^{2} } \right) - \beta^{4} n^{2} \frac{{\left( {1 + \mu } \right)\left( {3 - \mu } \right)}}{2} \\ & {\kern 1pt} \quad + \beta^{4} \left( {n^{2} - \Omega^{2} } \right) + 2\beta^{2} (1 + 3\beta^{2} )\frac{1 - \mu }{2}\left( {\mu - n^{2} \beta^{2} \frac{1 - \mu }{2}} \right) \\ & {\kern 1pt} \quad + \left( {n\beta^{2} \frac{3 - \mu }{2}} \right)^{2} {\kern 1pt} + \left( {n\beta \frac{1 + \mu }{2}} \right)^{2} \\ \end{aligned} $$
$$ a_{8} = \left( {\beta^{4} - \beta^{2} } \right)\left( {(1 + 3\beta^{2} )\frac{1 - \mu }{2}} \right) $$

Appendix C

The analytical solutions of axial \(u(x)\), circumferential \(v(x)\), and radial \(w(x)\) displacement responses are obtained using the residue theorem.

$$ \begin{aligned} u(x) & = \frac{{\Omega^{2} F_{x} }}{{2\pi \rho_{s} hR\omega^{2} }} \cdot \left[ {2\pi i\sum\limits_{k = 1}^{m} {{\text{Res}}} [M_{13} (\lambda_{k} )] + \pi i\;\sum\limits_{k = 1}^{8 - 2m} {{\text{Res}}} [M_{13} (\lambda_{k} )]} \right] \\ & = \frac{{\Omega^{2} F_{x} }}{{2\pi \rho_{s} hR\omega^{2} }} \cdot {\text{Re}} \left[ {\left( \begin{gathered} 2\pi i \cdot \sum\limits_{k = 1}^{m} {\frac{{\alpha^{\prime}_{1} \lambda_{k}^{4} + \beta^{\prime}_{1} \lambda_{k}^{2} + \gamma^{\prime}_{1} \lambda_{k}^{0} }}{{8a^{\prime}_{8} \lambda_{k}^{7} + 6a^{\prime}_{6} \lambda_{k}^{5} + 4a^{\prime}_{4} \lambda_{k}^{3} + 2a^{\prime}_{2} \lambda_{k} }}} \hfill \\ + \pi i \cdot \sum\limits_{k = 1}^{8 - 2m} {\frac{{\alpha^{\prime}_{1} \lambda_{k}^{4} + \beta^{\prime}_{1} \lambda_{k}^{2} + \gamma^{\prime}_{1} \lambda_{k}^{0} }}{{8a^{\prime}_{8} \lambda_{k}^{7} + 6a^{\prime}_{6} \lambda_{k}^{5} + 4a^{\prime}_{4} \lambda_{k}^{3} + 2a^{\prime}_{2} \lambda_{k} }}} \hfill \\ \end{gathered} \right) \cdot \exp \left( {i\frac{{\lambda_{k} }}{R}x} \right)} \right] \\ \end{aligned} $$
$$ \begin{aligned} v(x) & = \frac{{\Omega^{2} F_{x} }}{{2\pi \rho_{s} hR\omega^{2} }} \cdot \left[ {2\pi i \cdot \sum\limits_{k = 1}^{m} {{\text{Res}}} [M_{23} (\lambda_{k} )] + \pi i \cdot \sum\limits_{k = 1}^{8 - 2m} {{\text{Res}}} [M_{23} (\lambda_{k} )]} \right] \\ & = \frac{{\Omega^{2} F_{x} }}{{2\pi \rho_{s} hR\omega^{2} }} \cdot {\text{Re}} \left[ {\left( \begin{gathered} 2\pi i \cdot \sum\limits_{k = 1}^{m} {\frac{{a^{\prime}_{2} \lambda_{k}^{4} + \beta^{\prime}_{2} \lambda_{k}^{2} + \gamma^{\prime}_{2} \lambda_{k}^{0} }}{{8a^{\prime}_{8} \lambda_{k}^{7} + 6a^{\prime}_{6} \lambda_{k}^{5} + 4a^{\prime}_{4} \lambda_{k}^{3} + 2a^{\prime}_{2} \lambda_{k} }}} \hfill \\ { + }\pi i \cdot \sum\limits_{k = 1}^{8 - 2m} {\frac{{a^{\prime}_{2} \lambda_{k}^{4} + \beta^{\prime}_{2} \lambda_{k}^{2} + \gamma^{\prime}_{2} \lambda_{k}^{0} }}{{8a^{\prime}_{8} \lambda_{k}^{7} + 6a^{\prime}_{6} \lambda_{k}^{5} + 4a^{\prime}_{4} \lambda_{k}^{3} + 2a^{\prime}_{2} \lambda_{k} }}} \hfill \\ \end{gathered} \right) \cdot \exp \left( {i\frac{{\lambda_{k} }}{R}x} \right)} \right] \\ \end{aligned} $$
$$ \begin{aligned} w(x) & = \frac{{\Omega^{2} F_{x} }}{{2\pi \rho_{s} hR\omega^{2} }} \cdot \left[ {2\pi i \cdot \sum\limits_{k = 1}^{m} {Res} [M_{33} (\lambda_{k} )] + \pi i \cdot \sum\limits_{k = 1}^{8 - 2m} {{\text{Res}}} [M_{33} (\lambda_{k} )]} \right] \\ & = \frac{{\Omega^{2} F_{x} }}{{2\pi \rho_{s} hR\omega^{2} }} \cdot {\text{Re}} \left[ {\left( \begin{gathered} 2\pi i \cdot \sum\limits_{k = 1}^{m} {\frac{{a^{\prime}_{3} \lambda_{k}^{4} + \beta^{\prime}_{3} \lambda_{k}^{2} + \gamma^{\prime}_{3} \lambda_{k}^{0} }}{{8a^{\prime}_{8} \lambda_{k}^{7} + 6a^{\prime}_{6} \lambda_{k}^{5} + 4a^{\prime}_{4} \lambda_{k}^{3} + 2a^{\prime}_{2} \lambda_{k} }}} \hfill \\ { + }\pi i \cdot \sum\limits_{k = 1}^{8 - 2m} {\frac{{a^{\prime}_{3} \lambda_{k}^{4} + \beta^{\prime}_{3} \lambda_{k}^{2} + \gamma^{\prime}_{3} \lambda_{k}^{0} }}{{8a^{\prime}_{8} \lambda_{k}^{7} + 6a^{\prime}_{6} \lambda_{k}^{5} + 4a^{\prime}_{4} \lambda_{k}^{3} + 2a^{\prime}_{2} \lambda_{k} }}} \hfill \\ \end{gathered} \right) \cdot \exp \left( {i\frac{{\lambda_{k} }}{R}x} \right)} \right] \\ \end{aligned} $$

where \(\alpha^{\prime}_{1}\), \(\beta^{\prime}_{1}\) \(\gamma^{\prime}_{1}\), \(\alpha^{\prime}_{2}\), \(\beta^{\prime}_{2}\), \(\gamma^{\prime}_{2}\), \(\alpha^{\prime}_{3}\), \(\beta^{\prime}_{3}\), \(\gamma^{\prime}_{3}\), \(a^{\prime}_{8}\), \(a^{\prime}_{6}\), \(a^{\prime}_{4}\), and \(a^{\prime}_{2}\) are coefficient, which are given as:

$$ \alpha^{\prime}_{1} = \beta^{2} (1 + 3\beta^{2} )\frac{1 - \mu }{2} $$
$$ \begin{aligned} \beta^{\prime}_{1} & = \beta^{2} \left( {n^{2} - \Omega^{2} } \right) + \left( {\mu - n^{2} \beta^{2} \frac{1 - \mu }{2}} \right) \\ & \quad \left( {(1 + 3\beta^{2} )\frac{1 - \mu }{2}} \right) - \frac{1 + \mu }{2}\frac{3 - \mu }{2}n^{2} \beta^{2} \\ \end{aligned} $$
$$ \gamma^{\prime}_{1} = \left( {\mu - n^{2} \beta^{2} \frac{1 - \mu }{2} - \frac{1 + \mu }{2}} \right)n^{2} + \left( {\mu - n^{2} \beta^{2} \frac{1 - \mu }{2}} \right)\Omega^{2} $$
$$ \alpha^{\prime}_{2} = - n\frac{1 + \mu }{2}\beta^{2} - n\beta^{2} \frac{3 - \mu }{2} $$
$$ \begin{aligned} \beta^{\prime}_{2} & = n\frac{1 + \mu }{2}\left( {n^{2} \beta^{2} \frac{1 - \mu }{2} - \mu } \right) \\ & \quad - \left( {n^{2} (1 + \beta^{2} )\frac{1 - \mu }{2} - \Omega^{2} } \right)\left( {n\beta^{2} \frac{3 - \mu }{2}} \right) \\ \end{aligned} $$
$$ \gamma^{\prime}_{2} = - \left( {n^{2} (1 + \beta^{2} )\frac{1 - \mu }{2} - \Omega^{2} } \right)n $$
$$ \alpha^{\prime}_{3} = (1 + 3\beta^{2} )\frac{1 - \mu }{2} $$
$$ \begin{aligned} \beta^{\prime}_{3} & = n^{2} - \Omega^{2} + \left( {n^{2} (1 + \beta^{2} )\frac{1 - \mu }{2} - \Omega^{2} } \right) \\ & \quad (1 + 3\beta^{2} )\frac{1 - \mu }{2} + in\frac{1 + \mu }{2} \\ \end{aligned} $$
$$ \gamma^{\prime}_{3} = \alpha^{\prime}f^{\prime} = \left( {n^{2} (1 + \beta^{2} )\frac{1 - \mu }{2} - \Omega^{2} } \right)\left( {n^{2} - \Omega^{2} } \right) $$
$$ a^{\prime}_{8} = - a_{8} ,a^{\prime}_{6} = a_{6} ,a^{\prime}_{4} = - a_{4} ,a^{\prime}_{2} = - a_{2} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wang, C., Yin, Y. et al. Analytical approach for nonlinear vibration response of the thin cylindrical shell with a straight crack. Nonlinear Dyn 111, 10957–10980 (2023). https://doi.org/10.1007/s11071-023-08460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08460-4

Keywords

Navigation