Abstract
We demonstrate how the pitchfork, transcritical and saddle-node bifurcations of steady states observed in dynamical systems with a finite number of isolated equilibrium points occur in systems with lines of equilibria. The exploration is carried out by using the numerical simulation and linear stability analysis applied to a model of a memristor-based circuit. All the discussed bifurcation scenarios are considered in the context of models with the piecewise-smooth memristor current-voltage characteristic (Chua’s memristor), as well as on examples of oscillators with the memristor nonlinearity that is smooth everywhere. Finally, we compare the dynamics of ideal-memristor-based oscillators with the behavior of models taking into account the memristor forgetting effect. The presented results are obtained for electronic circuit models, but the studied bifurcation phenomena can be exhibited by systems with lines of equilibria of any nature.




Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Notes
Here, we mean the direction being parallel to the OZ axis.
References
Ascoli, A., Senger, V., Tetzlaff, R.: Memristor model comparison. IEEE Circuits Syst. Mag. 13(2), 89–105 (2013)
Botta, V., Néspoli, C., Messias, M.: Mathematical analysis of a third-order memristor-based Chua’s oscillator. TEMA Tend. Mat. Apl. Comput. 12(2), 91–99 (2011)
Chang, T., Jo, S., Kim, K., Sheridan, P., Gaba, S., Lu, W.: Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 102(4), 857–863 (2011)
Chen, L., Li, C., Huang, T., Chen, Y., Wen, S., Qi, J.: A synapse memristor model with forgetting effect. Phys. Lett. A 377(45–48), 3260–3265 (2013)
Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory CT–18(5), 507–519 (1971)
Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)
Chua, L., Kang, S.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)
Corinto, F., Forti, M., Chua, L.: Nonlinear Circuits and Systems with Memristors. Springer, New York (2020)
Fiedler, B., Liebscher, S.: Hopf bifurcation from lines of equilibria without parameters: ii. Systems of viscous hyperbolic balance laws. SIAM J. Math. Anal. 31(6), 1396–1404 (2000)
Fiedler, B., Liebscher, S., Alexander, J.: Generic Hopf bifurcation from lines of equilibria without parameters: I. Theory. J. Differ. Equ. 167(1), 16–35 (2000)
Fiedler, B., Liebscher, S., Alexander, J.: Generic Hopf bifurcation from lines of equilibria without parameters: iii. Binary oscillators. Int. J. Bifurc. Chaos 10(7), 1613–1621 (2000)
Gotthans, T., Petržela, J.: New class of chaotic systems with circular equilibrium. Nonlinear Dyn. 81(3), 1143–1149 (2015)
Gotthans, T., Sprott, J., Petrzela, J.: Simple chaotic flow with circle and square equilibrium. Int. J. Bifurc. Chaos 26(8), 1650,137 (2016)
Guseinov, D., Matyushkin, I., Chernyaev, N., Mikhailov, A., Pershin, Y.: Capacitive effects can make memristors chaotic. Chaos Solitons Fractals 144, 110,699 (2021)
Itoh, M., Chua, L.: Memristor oscillators. Int. J. Bifurc Chaos 18(11), 3183–3206 (2008)
Jafari, S., Sprott, J., Pham, V.T., Volos, C., Li, C.: Simple chaotic 3d flows with surfaces of equilibria. Nonlinear Dyn. 86(2), 1349–1358 (2016)
Korneev, I., Semenov, V.: Andronov-Hopf bifurcation with and without parameter in a cubic memristor oscillator with a line of equilibria. Chaos 27(8), 081,104 (2017)
Korneev, I., Semenov, V., Slepnev, A., Vadivasova, T.: Complete synchronization of chaos in systems with nonlinear inertial coupling. Chaos Solitons Fractals 142, 110,459 (2021)
Korneev, I., Slepnev, A., Vadivasova, T., Semenov, V.: Forced synchronization of an oscillator with a line of equilibria. Eur. Phys. J. Spec. Top. 229(12), 2215–2224 (2020)
Korneev, I., Slepnev, A., Vadivasova, T., Semenov, V.: Subcritical Andronov-Hopf scenario for systems with a line of equilibria. Chaos 31(7), 073,102 (2021)
Korneev, I., Vadivasova, T., Semenov, V.: Hard and soft excitation of oscillations in memristor-based oscillators with a line of equilibria. Nonlinear Dyn. 89(4), 2829–2843 (2017)
Liebscher, S.: Bifurcation without Parameters. Lectures Notes in Mathematics, vol. 2117. Springer, New York (2015)
Linn, E., Siemon, A., Waser, R., Menzel, S.: Applicability of well-established memristive models for simulations of resistive switching devices. IEEE Trans. Circuits Syst. I Regul. Pap. 61(8), 2402–2410 (2014)
Messias, M., Nespoli, C., Botta, V.: Hopf bifurcation from lines of equilibria without parameters in memristor oscillators. Int. J. Bifurc. Chaos 20(2), 437–450 (2010)
Riaza, R.: Manifolds of equilibria and bifurcations without parameters in memristive circuits. SIAM J. Appl. Math. 72(3), 877–896 (2012)
Riaza, R.: Transcritical bifurcation without parameters in memristive circuits. SIAM J. Appl. Math. 78(1), 395–417 (2018)
Semenov, V.: Synthesis of memristive one-port circuits with piecewise-smooth characteristics. ArXiv: 2203.12708 (2022)
Semenov, V., Korneev, I., Arinushkin, P., Strelkova, G., Vadivasova, T., Anishchenko, V.: Numerical and experimental studies of attractors in memristor-based Chua’s oscillator with a line of equilibria. Noise-induced effects. Eur. Phys. J. Spec. Top. 224(8), 1553–1561 (2015)
Singh, J., Raj, B.: An accurate and generic window function for nonlinear memristor models. J. Comput. Electron. 18(2), 640–647 (2019)
Tetzlaff, R. (ed.): Memristor and Memristive Systems. Springer-Verlag, New York (2014)
Zhou, E., Fang, L., Yang, B.: A general method to describe forgetting effect of memristors. Phys. Lett. A 383(11), 942–948 (2019)
Acknowledgements
V.V.S. and A.S.Z. acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Projektnummer—163436311-SFB-910. V.V.S. also acknowledges support by the Russian Science Foundation (Project No. 22-72-00038).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Korneev, l.A., Slepnev, A.V., Zakharova, A.S. et al. Generalized model for steady-state bifurcations without parameters in memristor-based oscillators with lines of equilibria. Nonlinear Dyn 111, 1235–1243 (2023). https://doi.org/10.1007/s11071-022-07905-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-022-07905-6