Skip to main content
Log in

Nonlinear dynamics for a class of 2-DOF systems with viscoelastic limit devices on a curved track

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents the nonlinear dynamics of a complex 2-DOF (two degree-of-freedom) system including nonlinear stiffness and damping elements, friction as well as impact, and the purpose of study is to give an original and deep investigation on the discontinuous dynamical behaviors for such a 2-DOF system through strict mathematical consideration. Firstly, the physical model of the system consisting of a ball and an object with curved track and viscoelastic limit devices is established by Coulomb friction and non-linear spring-damping model. And the eight motion states associated with free, sliding or stick motions are defined for the oscillator. Secondly, based on the non-smoothness/discontinuity resulted from impact/friction, the phase space is divided into different domains and boundaries in absolute and relative coordinates, respectively. Thirdly, some necessary and sufficient conditions for oscillator’s motion switching at separation boundaries are given by G-functions of the flow switchability theory in discontinuous dynamical systems. Finally, in order to better understand the switching criteria and the complexity of oscillator’s motion, some illustrative examples for several typical motions in system are studied by numerical simulation. The nonlinear spring-damping model is widely used as a shock absorber in machinery, aerospace, construction and other fields, which can accurately reflect the energy loss during impact process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)

    Book  Google Scholar 

  2. Awrejcewicz, J.: Chaotic motion in a nonlinear oscillator with friction. KSME Int. J. 2(2), 104–109 (1988)

    Article  Google Scholar 

  3. Awrejcewicz, J., Olejnik, P.: Analysis of dynamic systems with various friction laws. Appl. Mech. Rev. 58(6), 389–411 (2005)

    Article  Google Scholar 

  4. Andersson, S., S\(\ddot{\rm {o}}\)derberg, A., Bj\(\ddot{\rm {o}}\)rklund, S.: Friction models for sliding dry, boundary and mixed lubricated contacts. Tribol. Int. 40(4), 580-587 (2007)

  5. Cheng, G., Zu, J.: Dynamics of a dry friction oscillator under two-frequency excitations. J. Sound Vibr. 275(3), 591–603 (2004)

    Article  Google Scholar 

  6. Cheng, G., Zu, J.: A numerical study of a dry friction oscillator with parametric and external excitations. J. Sound Vibr. 287(1), 329–342 (2005)

    Article  Google Scholar 

  7. Li, Z., Cao, Q., L\(\acute{{\rm {e}}}\)ger, A.: The equilibrium stability for a smooth and discontinuous oscillator with dry friction. Acta. Mech. Sin. 32(2), 309–319 (2016)

  8. Li, Z., Cao, Q., L\(\acute{e}\)ger, A.: Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction. Chin. Phys. B 25(1), 010502 (2016)

  9. Li, Z., Cao, Q., L\(\acute{e}\)ger, A.: The complicated bifurcation of an archetypal self-excited SD oscillator with dry friction. Nonlinear Dyn. 89(12), 91–106 (2017)

  10. Li, Z., Cao, Q., Nie, Z.: Stick-slip vibrations of a self-excited SD oscillator with Coulomb friction. Nonlinear Dyn. 102(3), 1–17 (2020)

    Article  Google Scholar 

  11. Kubas, K., Harlecki, A.: Dynamic analysis of a belt transmission with the GMS friction model. Meccanica 56, 2293–2305 (2021)

    Article  MathSciNet  Google Scholar 

  12. Awrejcewicz, J., Krys’ ko, V., Vakakis, A.: Nonlinear Dynamics of Continuous Elastic Systems. Springer, New York (2004)

  13. Bernardo, M., Kowalczyk, P.: Sliding bifurcations: a novel mechanism for the sudden onset of chaos in dry friction oscillators. Int. J. Bifur. Chaos 13(10), 2935–2948 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rituraj, R., Vacca, A., Rigosi, M.: Modeling and validation of hydro-mechanical losses in pressure compensated external gear machines. Mech. Mach. Theory 161, 104310 (2021)

    Article  Google Scholar 

  15. Olejnik, P., Awrejcewicz, J.: Application of H\(\acute{e}\)non method in numerical estimation of the stick-slip transitions existing in Filippov-type discontinuous dynamical systems with dry friction. Nonlinear Dyn. 73, 723–736 (2013)

    Article  Google Scholar 

  16. Hu, G., Hu, Z., Jian, B., Liu, L., Wan, H.: On the determination of the damping coefficient of non-linear spring-dashpot system to model Hertz contact for simulation by discrete element method. J. Comput. 6(5), 984–988 (2011)

    Article  Google Scholar 

  17. Li, Q., Wei, L., Tan, J., Xi, J.: Double grazing periodic motions and bifurcations in a vibroimpact system with bilateral stops. Abstr. Appl. Anal. pp. 1–9 (2014)

  18. Tao, H., Gibert, J.: Periodic orbits of a conservative 2-DOF vibro-impact system by piecewise continuation: bifurcations and fractals. Nonlinear Dyn. 95(10), 2963–2993 (2019)

    Article  MATH  Google Scholar 

  19. Luo, A.: Period-doubling induced chaotic motion in the LR model of a horizontal impact oscillator. Chaos Solitons Fract. 19(4), 823–839 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Holmest, P.: The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vibr. 84(2), 173–189 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luo, A., Han, R.: The dynamics of a bouncing ball with a sinusoidally vibrating table revisited. Nonlinear Dyn. 10(1), 1–18 (1996)

    Article  MathSciNet  Google Scholar 

  22. Okni\(\acute{\rm {o}}\)ski, A., Radziszewski, B.: Dynamics of impacts with a table moving with piecewise constant velocity. Nonlinear Dyn. 58(3), 515–523 (2009)

  23. Heiman, M., Sherman, P., Bajaj, A.: On the dynamics and stability of an inclined impact pair. J. Sound Vibr. 114(3), 535–547 (1987)

    Article  MATH  Google Scholar 

  24. Heiman, M., Bajaj, A., Sherman, P.: Periodic motions and bifurcations in dynamics of an inclined impact pair. J. Sound Vibr. 124(1), 55–78 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, Y., Fu, X.: On periodic motions of an inclined impact pair. Commun. Nonlinear Sci. 20(3), 1033–1042 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hunt, K., Crossley, F.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42(2), 440–445 (1975)

    Article  Google Scholar 

  27. Leroy, B.: Collision between two balls accompanied by deformation: a qualitative approach to Hertz’s theory. Am. J. Phys. 53(4), 346–349 (1985)

  28. Dintwa, E., Tijskens, E., Ramon, H.: On the accuracy of the Hertz model to describe the normal contact of soft elastic spheres. Granul. Matter 10(3), 209–221 (2008)

    Article  MATH  Google Scholar 

  29. Lankarani, H., Nikravesh, P.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Design. 112(3), 369–376 (1990)

    Article  Google Scholar 

  30. P\({\mathring{\rm {u}}}\)st, L., Peterka, F.: Impact oscillator with Hertz’s model of contact. Meccanica 38(1), 99–116 (2003)

  31. Gonthier, Y., Mcphee, J., Lange, C., Piedboeuf, J.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11(3), 209–233 (2004)

    Article  MATH  Google Scholar 

  32. Muthukumar, S., DesRoches, R.: A Hertz contact model with non-linear damping for pounding simulation. Earthquake Engng. Struct. Dyn. 35(7), 811–828 (2006)

    Article  Google Scholar 

  33. Ibrahim, R.: Vibro-impact Dynamics: Modeling, Mapping and Applications. Springer, New York (2009)

    Book  MATH  Google Scholar 

  34. Kundu, S., Banerjee, S., Ing, J., Pavlovskaia, E., Wiercigroch, M.: Singularities in soft-impacting systems. Physica. D 241(5), 553–565 (2012)

    Article  MATH  Google Scholar 

  35. Chakraborty, I., Balachandran, B.: Near-grazing dynamics of base excited cantilevers with nonlinear tip interactions. Nonlinear Dyn. 70(2), 1297–1310 (2012)

    Article  MathSciNet  Google Scholar 

  36. Wagg, D.: Multiple non-smooth events in multi-degree-of-freedom vibro-impact systems. Nonlinear Dyn. 43(1), 137–148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xia, Y., Pang, J., Yang, L., Chu, Z.: Investigation on clearance-induced vibro-impacts of torsional system based on Hertz contact nonlinearity. Mech. Mach. Theory 162, 104342 (2021)

    Article  Google Scholar 

  38. Keller, J.: Impact with friction. J. Appl. Mech. 53(1), 1–4 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bapat, C.: The general motion of an inclined impact damper with friction. J. Sound Vibr. 184(3), 417–427 (1995)

    Article  MATH  Google Scholar 

  40. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control. Springer Nature, Switzerland (1996)

    MATH  Google Scholar 

  41. Blazejczyk-Okolewska, B.: Study of the impact oscillator with elastic coupling of masses. Chaos Solitons Fract. 11(15), 2487–2492 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, Y., Fu, X.: Flow switchability of motions in a horizontal impact pair with dry friction. Commun. Nonlinear Sci. Numer. Simul. 44(3), 89–107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dou, C., Fan, J., Li, C., Cao, J., Gao, M.: On discontinuous dynamics of a class of friction-influenced oscillators with nonlinear damping under bilateral rigid constraints. Mech. Mach. Theory 147, 103750 (2020)

    Article  Google Scholar 

  44. Virgin, L., Begley, C.: Grazing bifurcations and basins of attraction in an impact-friction oscillator. Physica D 130(1), 43–57 (1999)

    Article  MATH  Google Scholar 

  45. Virgin, L., Begley, C.: Nonlinear features in the dynamics of an impact-friction oscillator. Stochaos, Stoch. Chaotic Dyn. Lakes (2000)

    Book  Google Scholar 

  46. Lacarbonara, W., Vestroni, F.: Nonclassical responses of oscillators with hysteresis. Nonlinear Dyn. 32(3), 235–258 (2003)

    Article  MATH  Google Scholar 

  47. Han, W., Hu, H., Jin, D.: Experimental study on dynamics of an oblique-impact vibrating system of two degrees of freedom. Nonlinear Dyn. 50(3), 551–573 (2007)

    Article  MATH  Google Scholar 

  48. Lacarbonara, W., Cetraro, M.: Flutter control of a lifting surface via visco-hysteretic vibration absorbers. Int. J. Aeronaut. Space 12(4), 331–345 (2011)

    Article  Google Scholar 

  49. Flores, P., Leine, R., Glocker, C.: Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems. Nonlinear Dyn. 69, 2117–2133 (2012)

    Article  MathSciNet  Google Scholar 

  50. Ho, J., Nguyen, V., Woo, K.: Nonlinear dynamics of a new electro-vibro-impact system. Nonlinear Dyn. 63(1–2), 35–49 (2011)

    Article  MATH  Google Scholar 

  51. Flores, P., Lankarani, H.: Contact Force Models for Multibody Dynamics. Springer Nature, Switzerland (2016)

    Book  MATH  Google Scholar 

  52. Rahmanian, S., Ghazavi, M.: Bifurcation in planar slider-crank mechanism with revolute clearance joint. Mech. Mach. Theory 91, 86–101 (2015)

    Article  Google Scholar 

  53. Li, X., Song, S., Wu, J.: Exponential stability of nonlinear systems with delayed impulses and applications. IEEE Trans. Automat. Contr. 64(10), 4024–4034 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Liu, X., Vlajic, N., Long, X., Meng, G., Balachandran, B.: Coupled axial-torsional dynamics in rotary drilling with state-dependent delay: stability and control. Nonlinear Dyn. 78(3), 1891–1906 (2014)

    Article  Google Scholar 

  55. Li, X., Yang, X.: Lyapunov stability analysis for nonlinear systems with state-dependent state delay. Automatica 112, 108674 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. Li, H., Xu, X., Ding, X.: Finite-time stability analysis of stochastic switched boolean networks with impulsive effect. Appl. Math. Comput. 347, 557–565 (2019)

    MathSciNet  MATH  Google Scholar 

  57. Xing, S., Luo, A.: Bifurcation trees of period-1 motions in a periodically excited, softening Duffing oscillator with time-delay. Int. J. Dyn. Control 7, 842–855 (2019)

    Article  MathSciNet  Google Scholar 

  58. Luo, A.: A theory for non-smooth dynamic systems on the connectable domains. Commun. Nonlinear Sci. Numer. Simul. 10(1), 1–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  59. Luo, A., Gegg, B.: Grazing phenomena in a periodically forced, friction-induced, linear oscillator. Commun. Nonlinear Sci. Numer. Simul. 11(7), 777–802 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. Luo, A., Gegg, B.: Stick and non-stick periodic motions in periodically forced oscillators with dry friction. J. Sound Vibr. 291(1–2), 132–168 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Luo, A.: On flow switching bifurcations in discontinuous dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 12(1), 100–116 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. Luo, A., Gegg, B.: An analytical prediction of sliding motions along discontinuous boundary in non-smooth dynamical systems. Nonlinear Dyn. 49(3), 401–424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. Gegg, B., Luo, A., Suh, S.: Grazing bifurcations of a harmonically excited oscillator moving on a time-varying translation belt. Nonlinear Anal-Real. 9(5), 2156–2174 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Luo, A., Zwiegart, P.: Existence and analytical predictions of periodic motions in a periodically forced, nonlinear friction oscillator. J. Sound Vibr. 309(1–2), 129–149 (2008)

    Article  Google Scholar 

  65. Luo, A.: Flow switching bifurcations on the separation boundary in discontinuous dynamical systems with flow barriers. P. I. Mech. Eng. K-J Mul. 221(3), 475–495 (2007)

    Google Scholar 

  66. Luo, A., Rapp, B.: Flow switchability and periodic motions in a periodically forced, discontinuous dynamical system. Nonlinear Anal-Real. 10(5), 3028–3044 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  67. Luo, A., Rapp, B.: Sliding and transversal motions on an inclined boundary in a periodically forced discontinuous system. Commun. Nonlinear Sci. Numer. Simul. 15(1), 86–98 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  68. Luo, A., Rapp, B.: On motions and switchability in a periodically forced, discontinuous system with a parabolic boundary. Nonlinear Anal-Real. 11(4), 2624–2633 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. Luo, A.: Discontinuous Dynamical Systems. Higher Education Press, Beijing (2010)

    Book  Google Scholar 

  70. Guo, Y., Luo, A.: Analytical predication of complex motion of a ball in a periodically shaken horizontal impact pair. J. Comput. Nonlinear Dyn. 7(2), 1–9 (2012)

    Google Scholar 

  71. Fu, X., Zhang, Y.: Stick motions and grazing flows in an inclined impact oscillator. Chaos Solitions Fract. 76, 218–230 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  72. Cao, J., Fan, J.: Discontinuous dynamical behaviors in a 2-DOF friction collision system with asymmetric damping. Chaos Solitons Fract. 142, 110405 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  73. Fan, J., Liu, T., Chen, S.: Analysis of dynamical behaviors of a 2-DOF friction-induced oscillator with one-sided impact on a conveyor belt. Nonlinear Dyn. 97, 797–830 (2019)

    Article  Google Scholar 

  74. Li, C., Fan, J., Yang, Z., Xue, S.: On discontinuous dynamical behaviors of a 2-DOF impact oscillator with friction and a periodically forced excitation. Mech. Mach. Theory 135, 81–108 (2019)

    Article  Google Scholar 

  75. Stewart, G., Lackner, M.: Offshore wind turbine load reduction employing optimal passive tuned mass damping systems. IEEE Trans. Control Syst. Technol. 21(4), 1090–1104 (2013)

    Article  Google Scholar 

  76. Lu, Z., Chen, X., Zhang, D., Dai, K.: Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation. Earthq. Eng. Struct. Dyn. 46(5), 697–714 (2016)

    Article  Google Scholar 

  77. Tian, L., Rong, K., Zhang, P., Liu, Y.: Vibration control of a power transmission tower with pounding tuned mass damper under multi-component seismic excitations. Appl. Sci. 7(5), 477 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Shandong Provincial Natural Science Foundation, China (No. ZR2019MA048) and the National Natural Science Foundation of China (No. 11971275).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjun Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The phase spaces of \(m _1\) and \(m _2\) are divided in absolute coordinates, and the domains and boundaries are expressed in Eqs. (A.1-A.4) and Eqs. (A.5-A.8) according to whether stick motion occurs.

Without stick motion, the domains and boundaries of \(m _{1}\) are expressed by

$$\begin{aligned}&\left\{ \begin{array}{lll} \text{\O}mega _{1}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (x _{2}-d ,\,x _{2}+d ),\;\dot{x }_{1}\in (\dot{x }_{2},+\infty )\cap (v ,+\infty )\},\\ \text{\O}mega _{2}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (x _{2}-d ,\,x _{2}+d ),\;\dot{x }_{1}\in (\dot{x }_{2},+\infty )\cap (-\infty ,\,v )\},\\ \text{\O}mega _{3}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (x _{2}-d ,\,x _{2}+d ),\;\dot{x }_{1}\in (-\infty ,\,\dot{x }_{2})\cap (v ,+\infty )\},\\ \text{\O}mega _{4}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (x _{2}-d ,\,x _{2}+d ),\;\dot{x }_{1}\in (-\infty ,\,\dot{x }_{2})\cap (-\infty ,\,v )\};\\ \end{array}\right. \qquad \qquad \qquad \qquad \end{aligned}$$
(A.1)
$$\begin{aligned}&\left\{ \begin{array}{lll} \partial \text{\O}mega _{12}^{(1)}=\partial \text{\O}mega _{21}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{12}^{(1)}=\varphi _{21}^{(1)}\equiv \dot{x }_{1}-v =0,\;\dot{x }_{1}\in (\dot{x }_{2},+\infty ),\;x _{1}\in (x _{2}-d ,\,x _{2}+d )\bigr \},\\ \partial \text{\O}mega _{34}^{(1)}=\partial \text{\O}mega _{43}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{34}^{(1)}=\varphi _{43}^{(1)}\equiv \dot{x }_{1}-v =0,\;\dot{x }_{1}\in (-\infty ,\dot{x }_{2}),\;x _{1}\in (x _{2}-d ,\,x _{2}+d )\bigr \},\\ \partial \text{\O}mega _{13}^{(1)}=\partial \text{\O}mega _{31}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{13}^{(1)}=\varphi _{31}^{(1)}\equiv \dot{x }_{1}-\dot{x }_{2}=0,\;\dot{x }_{1}\in (v ,+\infty ),\;x _{1}\in (x _{2}-d ,\,x _{2}+d )\bigr \},\\ \partial \text{\O}mega _{24}^{(1)}=\partial \text{\O}mega _{42}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{24}^{(1)}=\varphi _{42}^{(1)}\equiv \dot{x }_{1}-\dot{x }_{2}=0,\;\dot{x }_{1}\in (-\infty ,v ),\;x _{1}\in (x _{2}-d ,\,x _{2}+d )\bigr \},\\ ^1\partial \text{\O}mega _{1\infty }^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;^1\varphi _{1\infty }^{(1)}\equiv x _{1}-x _{2}-d =0,\;\dot{x }_{1}>\dot{x }_{2}\},\\ ^1\partial \text{\O}mega _{4\infty }^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;^1\varphi _{4\infty }^{(1)}\equiv x _{1}-x _{2}-d =0,\;\dot{x }_{1}<\dot{x }_{2}\},\\ ^2\partial \text{\O}mega _{1\infty }^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;^2\varphi _{1\infty }^{(1)}\equiv x _{1}-x _{2}+d =0,\;\dot{x }_{1}>\dot{x }_{2}\},\\ ^2\partial \text{\O}mega _{4\infty }^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;^2\varphi _{4\infty }^{(1)}\equiv x _{1}-x _{2}+d =0,\;\dot{x }_{1}<\dot{x }_{2}\},\\ \end{array}\right. \qquad \qquad \qquad \nonumber \\ \end{aligned}$$
(A.2)

and the domains and boundaries of \(m _{2}\) are expressed by

$$\begin{aligned}&\left\{ \begin{array}{lll} \text{\O}mega _{1}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\; |\;x _{2}\in (x _{1}-d ,\,x _{1}+{} d ),\;\dot{x }_{2}\in (-\infty ,\dot{x }_{1})\},\\ \text{\O}mega _{2}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\; |\;x _{2}\in (x _{1}-d ,\,x _{1}+d ),\;\dot{x }_{2}\in (\dot{x }_{1},+\infty )\}; \end{array}\right. \end{aligned}$$
(A.3)
$$\begin{aligned}&\left\{ \begin{array}{lll} \partial \text{\O}mega _{12}^{(2)}=\partial \text{\O}mega _{21}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;\varphi _{12}^{(2)}=\varphi _{21}^{(2)}\equiv \dot{x }_{2}-\dot{x }_{1}=0,\\ \qquad \qquad \qquad \qquad \qquad \;x _{2}\in (x _{1}-d ,\,x _{1}+d )\bigr \},\\ ^1\partial \text{\O}mega _{1\infty }^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;^1\varphi _{1\infty }^{(2)}\equiv x _{2}-x _{1}+d =0,\;\dot{x }_{2}<\dot{x }_{1}\},\\ ^1\partial \text{\O}mega _{2\infty }^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;^1\varphi _{2\infty }^{(2)}\equiv x _{2}-x _{1}+d =0,\;\dot{x }_{2}>\dot{x }_{1}\},\\ ^2\partial \text{\O}mega _{1\infty }^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;^2\varphi _{1\infty }^{(2)}\equiv x _{2}-x _{1}-d =0,\;\dot{x }_{2}<\dot{x }_{1}\},\\ ^2\partial \text{\O}mega _{2\infty }^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;^2\varphi _{2\infty }^{(2)}\equiv x _{2}-x _{1}-d =0,\;\dot{x }_{2}>\dot{x }_{1}\}. \end{array}\right. \nonumber \\ \end{aligned}$$
(A.4)
Fig. 23
figure 23

Absolute domains and boundaries without stick motion for the two masses: a object \(m _1\) and b ball \(m _2\)

As shown in Fig. 23, the domains \(\text{\O}mega _{\lambda }^{(1)}\) \((\lambda =1,2,3,4)\) are expressed in violet, pink, salmon and orange, respectively, where the object \(m _1 \) is in free motion without stick. The domains where the ball \(m _2\) does free motion without stick are \(\text{\O}mega _{1}^{(2)}\) and \(\text{\O}mega _{2}^{(2)}\), which are expressed in pink and orange. The velocity boundaries \(\partial \text{\O}mega _{12}^{(1)}\) and \(\partial \text{\O}mega _{34}^{(1)}\) of the object \(m _1\), which represent the speed of the conveyor belt, are painted as blue dotted lines. The velocity boundaries \(\partial \text{\O}mega _{13}^{(1)}\) and \(\partial \text{\O}mega _{24}^{(1)}\) of the object \(m _1\), which represent the speed of the ball \(m _2\), are expressed in the red dashed curves. The velocity boundary \(\partial \text{\O}mega _{12}^{(2)}\) of the ball \(m _2\) is also expressed in the red dashed curve. The impact boundaries \(^1\partial \text{\O}mega _{\tau \infty }^{(i )}\) and \(^2\partial \text{\O}mega _{\tau \infty }^{(i )}\,\,(\tau \in \{1,4\}\, \mathrm{if}\,i =1;\,\,\tau \in \{1,2\}\,\mathrm{if}\,i =2)\) are expressed in black dotted dashed curves. With stick motion, the domains and boundaries of \(m _{1}\) are defined as

$$\begin{aligned}&\left\{ \begin{array}{lll} \text{\O}mega _{1}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (x _{2}-d ,\,x _{2}+d ),\;\dot{x }_{1}\in (\dot{x }_{2},+\infty )\cap (v ,+\infty )\},\\ \text{\O}mega _{2}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (x _{2}-d ,\,x _{2}+d ),\;\dot{x }_{1}\in (\dot{x }_{2},+\infty )\cap (-\infty ,\,v )\},\\ \text{\O}mega _{3}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (x _{2}-d ,\,x _{2}+d ),\;\dot{x }_{1}\in (-\infty ,\,\dot{x }_{2})\cap (v ,+\infty )\},\\ \text{\O}mega _{4}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (x _{2}-d ,\,x _{2}+d ),\;\dot{x }_{1}\in (-\infty ,\,\dot{x }_{2})\cap (-\infty ,\,v )\},\\ \text{\O}mega _{5}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (x _{2}+d ,\,+\infty ),\;\dot{x }_{1}\in (\dot{x }_{2},+\infty )\cap (v ,+\infty )\},\\ \text{\O}mega _{6}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (x _{2}+d ,\,+\infty ),\;\dot{x }_{1}\in (\dot{x }_{2},+\infty )\cap (-\infty ,\,v )\},\\ \text{\O}mega _{7}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (x _{2}+d ,\,+\infty ),\;\dot{x }_{1}\in (-\infty ,\,\dot{x }_{2})\cap (v ,+\infty )\},\\ \text{\O}mega _{8}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (x _{2}+d ,\,+\infty ),\;\dot{x }_{1}\in (-\infty ,\,\dot{x }_{2})\cap (-\infty ,\,v )\},\\ \text{\O}mega _{9}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (-\infty ,\,x _{2}-d ),\;\dot{x }_{1}\in (\dot{x }_{2},+\infty )\cap (v ,+\infty )\},\\ \text{\O}mega _{a}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (-\infty ,\,x _{2}-d ),\;\dot{x }_{1}\in (\dot{x }_{2},+\infty )\cap (-\infty ,\,v )\},\\ \text{\O}mega _{b}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (-\infty ,\,x _{2}-d ),\;\dot{x }_{1}\in (-\infty ,\,\dot{x }_{2})\cap (v ,+\infty )\},\\ \text{\O}mega _{c}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\; |\;x _{1}\in (-\infty ,\,x _{2}-d ),\;\dot{x }_{1}\in (-\infty ,\,\dot{x }_{2})\cap (-\infty ,\,v )\};\\ \end{array}\right. \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \end{aligned}$$
(A.5)
$$\begin{aligned}&\left\{ \begin{array}{lll} \partial \text{\O}mega _{12}^{(1)}=\partial \text{\O}mega _{21}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{12}^{(1)}=\varphi _{21}^{(1)}\equiv \dot{x }_{1}-v =0,\;\dot{x }_{1}\in (\dot{x }_{2},+\infty ),\;x _{1}\in (x _{2}-d ,\,x _{2}+d )\bigr \},\\ \partial \text{\O}mega _{34}^{(1)}=\partial \text{\O}mega _{43}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{34}^{(1)}=\varphi _{43}^{(1)}\equiv \dot{x }_{1}-v =0,\;\dot{x }_{1}\in (-\infty ,\dot{x }_{2}),\;x _{1}\in (x _{2}-d ,\,x _{2}+d )\bigr \},\\ \partial \text{\O}mega _{56}^{(1)}=\partial \text{\O}mega _{65}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{56}^{(1)}=\varphi _{65}^{(1)}\equiv \dot{x }_{1}-v =0,\;\dot{x }_{1}\in (\dot{x }_{2},+\infty ),\;x _{1}\in (x _{2}+d ,\,+\infty )\bigr \},\\ \partial \text{\O}mega _{78}^{(1)}=\partial \text{\O}mega _{87}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{78}^{(1)}=\varphi _{87}^{(1)}\equiv \dot{x }_{1}-v =0,\;\dot{x }_{1}\in (-\infty ,\dot{x }_{2}),\;x _{1}\in (x _{2}+d ,\,+\infty )\bigr \},\\ \partial \text{\O}mega _{9a}^{(1)}=\partial \text{\O}mega _{a9}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{9a}^{(1)}=\varphi _{a9}^{(1)}\equiv \dot{x }_{1}-v =0,\;\dot{x }_{1}\in (\dot{x }_{2},+\infty ),\;x _{1}\in (-\infty ,\,x _{2}-d )\bigr \},\\ \partial \text{\O}mega _{bc}^{(1)}=\partial \text{\O}mega _{cb}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{bc}^{(1)}=\varphi _{cb}^{(1)}\equiv \dot{x }_{1}-v =0,\;\dot{x }_{1}\in (-\infty ,\dot{x }_{2}),\;x _{1}\in (-\infty ,\,x _{2}-d )\bigr \},\\ \partial \text{\O}mega _{13}^{(1)}=\partial \text{\O}mega _{31}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{13}^{(1)}=\varphi _{31}^{(1)}\equiv \dot{x }_{1}-\dot{x }_{2}=0,\;\dot{x }_{1}\in (v ,+\infty ),\;x _{1}\in (x _{2}-d ,\,x _{2}+d )\bigr \},\\ \partial \text{\O}mega _{24}^{(1)}=\partial \text{\O}mega _{42}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{24}^{(1)}=\varphi _{42}^{(1)}\equiv \dot{x }_{1}-\dot{x }_{2}=0,\;\dot{x }_{1}\in (-\infty ,v ),\;x _{1}\in (x _{2}-d ,\,x _{2}+d )\bigr \},\\ \partial \text{\O}mega _{57}^{(1)}=\partial \text{\O}mega _{75}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{57}^{(1)}=\varphi _{75}^{(1)}\equiv \dot{x }_{1}-\dot{x }_{2}=0,\;\dot{x }_{1}\in (v ,+\infty ),\;x _{1}\in (x _{2}+d ,\,+\infty )\bigr \},\\ \partial \text{\O}mega _{68}^{(1)}=\partial \text{\O}mega _{86}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{68}^{(1)}=\varphi _{86}^{(1)}\equiv \dot{x }_{1}-\dot{x }_{2}=0,\;\dot{x }_{1}\in (-\infty ,v ),\;x _{1}\in (x _{2}+d ,\,+\infty )\bigr \},\\ \partial \text{\O}mega _{9b}^{(1)}=\partial \text{\O}mega _{b9}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{9b}^{(1)}=\varphi _{b9}^{(1)}\equiv \dot{x }_{1}-\dot{x }_{2}=0,\;\dot{x }_{1}\in (v ,+\infty ),\;x _{1}\in (-\infty ,\,x _{2}-d )\bigr \},\\ \partial \text{\O}mega _{ac}^{(1)}=\partial \text{\O}mega _{ca}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{ac}^{(1)}=\varphi _{ca}^{(1)}\equiv \dot{x }_{1}-\dot{x }_{2}=0,\;\dot{x }_{1}\in (-\infty ,v ),\;x _{1}\in (-\infty ,\,x _{2}-d )\bigr \},\\ \partial \text{\O}mega _{15}^{(1)}=\partial \text{\O}mega _{51}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{15}^{(1)}=\varphi _{51}^{(1)}\equiv x _{1}-x _{2}-d =0,\;\dot{x }_{1}>\dot{x }_{2}\},\\ \partial \text{\O}mega _{48}^{(1)}=\partial \text{\O}mega _{84}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{48}^{(1)}=\varphi _{84}^{(1)}\equiv x _{1}-x _{2}-d =0,\;\dot{x }_{1}<\dot{x }_{2}\},\\ \partial \text{\O}mega _{19}^{(1)}=\partial \text{\O}mega _{91}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{19}^{(1)}=\varphi _{91}^{(1)}\equiv x _{1}-x _{2}+d =0,\;\dot{x }_{1}>\dot{x }_{2}\},\\ \partial \text{\O}mega _{4c}^{(1)}=\partial \text{\O}mega _{c4}^{(1)}=\bigl \{(x _{1},\dot{x }_{1})\;|\;\varphi _{4c}^{(1)}=\varphi _{c4}^{(1)}\equiv x _{1}-x _{2}+d =0,\;\dot{x }_{1}<\dot{x }_{2}\}, \end{array}\right. \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \nonumber \\ \end{aligned}$$
(A.6)

and the domains and boundaries of \(m _{2}\) are defined as

$$\begin{aligned}&\left\{ \begin{array}{lll} \text{\O}mega _{1}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\; |\;x _{2}\in (x _{1}-d ,\,x _{1}+d ),\;\dot{x }_{2}\in (-\infty ,\dot{x }_{1})\},\\ \text{\O}mega _{2}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\; |\;x _{2}\in (x _{1}-d ,\,x _{1}+d ),\;\dot{x }_{2}\in (\dot{x }_{1},+\infty )\},\\ \text{\O}mega _{3}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\; |\;x _{2}\in (-\infty ,\,x _{1}-d ),\;\dot{x }_{2}\in (-\infty ,\dot{x }_{1})\},\\ \text{\O}mega _{4}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\; |\;x _{2}\in (-\infty ,\,x _{1}-d ),\;\dot{x }_{2}\in (\dot{x }_{1},+\infty )\},\\ \text{\O}mega _{5}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\; |\;x _{2}\in (x _{1}+d ,\,+\infty ),\;\dot{x }_{2}\in (-\infty ,\dot{x }_{1})\},\\ \text{\O}mega _{6}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\; |\;x _{2}\in (x _{1}+d ,\,+\infty ),\;\dot{x }_{2}\in (\dot{x }_{1},+\infty )\}; \end{array}\right. \qquad \qquad \qquad \qquad \quad \qquad \qquad \quad \end{aligned}$$
(A.7)
$$\begin{aligned}&\left\{ \begin{array}{lll} \partial \text{\O}mega _{12}^{(2)}=\partial \text{\O}mega _{21}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;\varphi _{12}^{(2)}=\varphi _{21}^{(2)}\equiv \dot{x }_{2}-\dot{x }_{1}=0,\;x _{2}\in (x _{1}-d ,\,x _{1}+d )\bigr \},\\ \partial \text{\O}mega _{34}^{(2)}=\partial \text{\O}mega _{43}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;\varphi _{34}^{(2)}=\varphi _{43}^{(2)}\equiv \dot{x }_{2}-\dot{x }_{1}=0,\;x _{2}\in (-\infty ,\,x _{1}-d )\bigr \},\\ \partial \text{\O}mega _{56}^{(2)}=\partial \text{\O}mega _{65}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;\varphi _{56}^{(2)}=\varphi _{65}^{(2)}\equiv \dot{x }_{2}-\dot{x }_{1}=0,\;x _{2}\in (x _{1}+d ,\,+\infty )\bigr \},\\ \partial \text{\O}mega _{26}^{(2)}=\partial \text{\O}mega _{62}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;\varphi _{26}^{(2)}=\varphi _{62}^{(2)}\equiv x _{2}-x _{1}-d =0,\;\dot{x }_{2}>\dot{x }_{1}\},\\ \partial \text{\O}mega _{15}^{(2)}=\partial \text{\O}mega _{51}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;\varphi _{15}^{(2)}=\varphi _{51}^{(2)}\equiv x _{2}-x _{1}-d =0,\;\dot{x }_{2}<\dot{x }_{1}\},\\ \partial \text{\O}mega _{24}^{(2)}=\partial \text{\O}mega _{42}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;\varphi _{24}^{(2)}=\varphi _{42}^{(2)}\equiv x _{2}-x _{1}+d =0,\;\dot{x }_{2}>\dot{x }_{1}\},\\ \partial \text{\O}mega _{13}^{(2)}=\partial \text{\O}mega _{31}^{(2)}=\bigl \{(x _{2},\dot{x }_{2})\;|\;\varphi _{13}^{(2)}=\varphi _{31}^{(2)}\equiv x _{2}-x _{1}+d =0,\;\dot{x }_{2}<\dot{x }_{1}\}. \end{array}\right. \qquad \qquad \qquad \qquad \quad \qquad \qquad \quad \end{aligned}$$
(A.8)
Fig. 24
figure 24

Absolute domains and boundaries with stick motion for the two masses: a object \(m _1\) and b ball \(m _2\)

As shown in Fig. 24, the domains \(\text{\O}mega _{\tau }^{(1)}\) \((\tau =5,6,7,8,9,a,b,c)\) are expressed in yellow, light yellow, light green, green, blue, light blue, light purple and purple, respectively, where the object \(m _1\) is in free motion with stick. The domains \(\text{\O}mega _{\tau }^{(2)}\) \((\tau =3,4,5,6)\) represent the domains where the ball \(m _2\) does free motion with stick and are expressed in light yellow, light green, blue and purple, respectively. On the stick domains, the boundary \(\partial \text{\O}mega _{\alpha \beta }^{(1)}\) \(((\alpha , \beta )\in \{(5,6),(7,8),(9,a),(b,c)\})\) of the object \(m _1\) related to the speed of the conveyor belt is shown by darkgreen dotted line, the boundary \(\partial \text{\O}mega _{\alpha \beta }^{(1)}\) \(((\alpha , \beta )\in \{(5,7),(6,8),(9,b),(a,c)\})\) of the object \(m _1\) related to the speed of the ball \(m _2\) is shown by gold dashed curve, and the velocity boundaries \(\partial \text{\O}mega _{34}^{(2)}\) and \(\partial \text{\O}mega _{56}^{(2)}\) of the ball \(m _2\) are also shown by gold dashed curves. The displacement boundaries \(\partial \text{\O}mega _{j {} n }^{(1)}\) and \(\partial \text{\O}mega _{u g}^{(2)}\,\,((j ,n )\in \{(1,5),(1,9),(4,8),(4,c)\};\,\,(u ,g)\in \{(1,3),(1,5),(2,4),(2,6)\})\) are expressed in black dotted dashed curves.

Appendix B

In relative coordinates, the relative domains and boundaries of \(m _1\) with stick motion are expressed by

$$\begin{aligned}&\left\{ \begin{array}{lll} \text{\O}mega _{1}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;z _{1}\in (-d ,\,d ),\;\dot{z }_{1}\in (0,+\infty )\cap (v -\dot{x }_{2},+\infty )\},\\ \text{\O}mega _{2}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;z _{1}\in (-d ,\,d ),\;\dot{z }_{1}\in (0,+\infty )\cap (-\infty ,\,v -\dot{x }_{2})\},\\ \text{\O}mega _{3}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;z _{1}\in (-d ,\,d ),\;\dot{z }_{1}\in (-\infty ,\,0)\cap (v -\dot{x }_{2},+\infty )\},\\ \text{\O}mega _{4}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;z _{1}\in (-d ,\,d ),\;\dot{z }_{1}\in (-\infty ,\,0)\cap (-\infty ,\,v -\dot{x }_{2})\},\\ \text{\O}mega _{5}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;z _{1}\in (d ,\,+\infty ),\;\dot{z }_{1}\in (0,+\infty )\cap (v -\dot{x }_{2},+\infty )\},\\ \text{\O}mega _{6}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;z _{1}\in (d ,\,+\infty ),\;\dot{z }_{1}\in (0,+\infty )\cap (-\infty ,\,v -\dot{x }_{2})\},\\ \text{\O}mega _{7}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;z _{1}\in (d ,\,+\infty ),\;\dot{z }_{1}\in (-\infty ,\,0)\cap (v -\dot{x }_{2},+\infty )\},\\ \text{\O}mega _{8}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;z _{1}\in (d ,\,+\infty ),\;\dot{z }_{1}\in (-\infty ,\,0)\cap (-\infty ,\,v -\dot{x }_{2})\},\\ \text{\O}mega _{9}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;z _{1}\in (-\infty ,\,-d ),\;\dot{z }_{1}\in (0,+\infty )\cap (v -\dot{x }_{2},+\infty )\},\\ \text{\O}mega _{a}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;z _{1}\in (-\infty ,\,-d ),\;\dot{z }_{1}\in (0,+\infty )\cap (-\infty ,\,v -\dot{x }_{2})\},\\ \text{\O}mega _{b}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;z _{1}\in (-\infty ,\,-d ),\;\dot{z }_{1}\in (-\infty ,\,0)\cap (v -\dot{x }_{2},+\infty )\},\\ \text{\O}mega _{c}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\; |\;z _{1}\in (-\infty ,\,-d ),\;\dot{z }_{1}\in (-\infty ,\,0)\cap (-\infty ,\,v -\dot{x }_{2})\};\\ \end{array}\right. \qquad \qquad \qquad \end{aligned}$$
(B.1)
$$\begin{aligned}&\left\{ \begin{array}{lll} \partial \text{\O}mega _{12}^{(1)}=\partial \text{\O}mega _{21}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{12}^{(1)}=\varphi _{21}^{(1)}\equiv \dot{z }_{1}-(v -\dot{x }_{2})=0,\;\dot{z }_{1}\in (0,+\infty ),\;z _{1}\in (-d ,\,d )\bigr \},\\ \partial \text{\O}mega _{34}^{(1)}=\partial \text{\O}mega _{43}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{34}^{(1)}=\varphi _{43}^{(1)}\equiv \dot{z }_{1}-(v -\dot{x }_{2})=0,\;\dot{z }_{1}\in (-\infty ,0),\;z _{1}\in (-d ,\,d )\bigr \},\\ \partial \text{\O}mega _{56}^{(1)}=\partial \text{\O}mega _{65}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{56}^{(1)}=\varphi _{65}^{(1)}\equiv \dot{z }_{1}-(v -\dot{x }_{2})=0,\;\dot{z }_{1}\in (0,+\infty ),\;z _{1}\in (d ,\,+\infty )\bigr \},\\ \partial \text{\O}mega _{78}^{(1)}=\partial \text{\O}mega _{87}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{78}^{(1)}=\varphi _{87}^{(1)}\equiv \dot{z }_{1}-(v -\dot{x }_{2})=0,\;\dot{z }_{1}\in (-\infty ,0),\;z _{1}\in (d ,\,+\infty )\bigr \},\\ \partial \text{\O}mega _{9a}^{(1)}=\partial \text{\O}mega _{a9}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{9a}^{(1)}=\varphi _{a9}^{(1)}\equiv \dot{z }_{1}-(v -\dot{x }_{2})=0,\;\dot{z }_{1}\in (0,+\infty ),\;z _{1}\in (-\infty ,\,-d )\bigr \},\\ \partial \text{\O}mega _{bc}^{(1)}=\partial \text{\O}mega _{cb}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{bc}^{(1)}=\varphi _{cb}^{(1)}\equiv \dot{z }_{1}-(v -\dot{x }_{2})=0,\;\dot{z }_{1}\in (-\infty ,0),\;z _{1}\in (-\infty ,\,-d )\bigr \},\\ \partial \text{\O}mega _{13}^{(1)}=\partial \text{\O}mega _{31}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{13}^{(1)}=\varphi _{31}^{(1)}\equiv \dot{z }_{1}=0,\;\dot{z }_{1}\in (v -\dot{x }_{2},+\infty ),\;z _{1}\in (-d ,\,d )\bigr \},\\ \partial \text{\O}mega _{24}^{(1)}=\partial \text{\O}mega _{42}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{24}^{(1)}=\varphi _{42}^{(1)}\equiv \dot{z }_{1}=0,\;\dot{z }_{1}\in (-\infty ,v -\dot{x }_{2}),\;z _{1}\in (-d ,\,d )\bigr \},\\ \partial \text{\O}mega _{57}^{(1)}=\partial \text{\O}mega _{75}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{57}^{(1)}=\varphi _{75}^{(1)}\equiv \dot{z }_{1}=0,\;\dot{z }_{1}\in (v -\dot{x }_{2},+\infty ),\;z _{1}\in (d ,\,+\infty )\bigr \},\\ \partial \text{\O}mega _{68}^{(1)}=\partial \text{\O}mega _{86}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{68}^{(1)}=\varphi _{86}^{(1)}\equiv \dot{z }_{1}=0,\;\dot{z }_{1}\in (-\infty ,v -\dot{x }_{2}),\;z _{1}\in (d ,\,+\infty )\bigr \},\\ \partial \text{\O}mega _{9b}^{(1)}=\partial \text{\O}mega _{b9}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{9b}^{(1)}=\varphi _{b9}^{(1)}\equiv \dot{z }_{1}=0,\;\dot{z }_{1}\in (v -\dot{x }_{2},+\infty ),\;z _{1}\in (-\infty ,\,-d )\bigr \},\\ \partial \text{\O}mega _{ac}^{(1)}=\partial \text{\O}mega _{ca}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{ac}^{(1)}=\varphi _{ca}^{(1)}\equiv \dot{z }_{1}=0,\;\dot{z }_{1}\in (-\infty ,v -\dot{x }_{2}),\;z _{1}\in (-\infty ,\,-d )\bigr \},\\ \partial \text{\O}mega _{15}^{(1)}=\partial \text{\O}mega _{51}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{15}^{(1)}=\varphi _{51}^{(1)}\equiv z _{1}-d =0,\;\dot{z }_{1}>0\},\\ \partial \text{\O}mega _{48}^{(1)}=\partial \text{\O}mega _{84}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{48}^{(1)}=\varphi _{84}^{(1)}\equiv z _{1}-d =0,\;\dot{z }_{1}<0\},\\ \partial \text{\O}mega _{19}^{(1)}=\partial \text{\O}mega _{91}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{19}^{(1)}=\varphi _{91}^{(1)}\equiv z _{1}+d =0,\;\dot{z }_{1}>0\},\\ \partial \text{\O}mega _{4c}^{(1)}=\partial \text{\O}mega _{c4}^{(1)}=\bigl \{(z _{1},\dot{z }_{1})\;|\;\varphi _{4c}^{(1)}=\varphi _{c4}^{(1)}\equiv z _{1}+d =0,\;\dot{z }_{1}<0\}, \end{array}\right. \qquad \qquad \qquad \end{aligned}$$
(B.2)

and the domains and boundaries of \(m _{2}\) with stick motion are expressed by

$$\begin{aligned}&\left\{ \begin{array}{lll} \text{\O}mega _{1}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\; |\;z _{2}\in (-d ,\,d ),\;\dot{z }_{2}\in (-\infty ,0)\},\\ \text{\O}mega _{2}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\; |\;z _{2}\in (-d ,\,d ),\;\dot{z }_{2}\in (0,+\infty )\},\\ \text{\O}mega _{3}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\; |\;z _{2}\in (-\infty ,\,-d ),\;\dot{z }_{2}\in (-\infty ,0)\},\\ \text{\O}mega _{4}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\; |\;z _{2}\in (-\infty ,\,-d ),\;\dot{z }_{2}\in (0,+\infty )\},\\ \text{\O}mega _{5}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\; |\;z _{2}\in (d ,\,+\infty ),\;\dot{z }_{2}\in (-\infty ,0)\},\\ \text{\O}mega _{6}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\; |\;z _{2}\in (d ,\,+\infty ),\;\dot{z }_{2}\in (0,+\infty )\}; \end{array}\right. \end{aligned}$$
(B.3)
$$\begin{aligned}&\left\{ \begin{array}{lll} \partial \text{\O}mega _{12}^{(2)}=\partial \text{\O}mega _{21}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\;|\;\varphi _{12}^{(2)}=\varphi _{21}^{(2)}\equiv \dot{z }_{2}=0,\;|z _{2}|<d \bigr \},\\ \partial \text{\O}mega _{34}^{(2)}=\partial \text{\O}mega _{43}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\;|\;\varphi _{34}^{(2)}=\varphi _{43}^{(2)}\equiv \dot{z }_{2}=0,\;z _{2}<-d \bigr \},\\ \partial \text{\O}mega _{56}^{(2)}=\partial \text{\O}mega _{65}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\;|\;\varphi _{56}^{(2)}=\varphi _{65}^{(2)}\equiv \dot{z }_{2}=0,\;z _{2}>d \bigr \},\\ \partial \text{\O}mega _{26}^{(2)}=\partial \text{\O}mega _{62}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\;|\;\varphi _{26}^{(2)}=\varphi _{62}^{(2)}\equiv z _{2}-d =0,\;\dot{z }_{2}>0\bigr \},\\ \partial \text{\O}mega _{15}^{(2)}=\partial \text{\O}mega _{51}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\;|\;\varphi _{15}^{(2)}=\varphi _{51}^{(2)}\equiv z _{2}-d =0,\;\dot{z }_{2}<0\bigr \},\\ \partial \text{\O}mega _{24}^{(2)}=\partial \text{\O}mega _{42}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\;|\;\varphi _{24}^{(2)}=\varphi _{42}^{(2)}\equiv z _{2}+d =0,\;\dot{z }_{2}>0\bigr \},\\ \partial \text{\O}mega _{13}^{(2)}=\partial \text{\O}mega _{31}^{(2)}=\bigl \{(z _{2},\dot{z }_{2})\;|\;\varphi _{13}^{(2)}=\varphi _{31}^{(2)}\equiv z _{2}+d =0,\;\dot{z }_{2}<0\bigr \}. \end{array}\right. \nonumber \\ \end{aligned}$$
(B.4)
Fig. 25
figure 25

Relative domains and boundaries with stick motion for the two masses: a object \(m _1\) and b ball \(m _2\)

As shown in Fig. 25, the velocity boundaries related to the speed of the object \(m _1\) or the ball \(m _2\) become straight lines which are time-independent and are represented by red (without stick motion) or yellow (with stick motion), and the displacement boundaries become black straight lines which are time-independent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Fan, J. Nonlinear dynamics for a class of 2-DOF systems with viscoelastic limit devices on a curved track. Nonlinear Dyn 108, 3123–3156 (2022). https://doi.org/10.1007/s11071-022-07375-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07375-w

Keywords

Navigation