Skip to main content
Log in

Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we present a numerical study of two-soliton collisions in a system described by a cubic (Kerr-type) nonlinear Schrödinger equation whose nonlinearity has small chaotic imperfections. We use a logistic map in order to obtain a chaotic perturbation, where by defining the values of its seed and the interaction parameter, one can observe a disorder in the nonlinearity of the system. This disorder was varied by changing the parameter values and controlled via the Lyapunov exponent, however, always maintaining a fixed amplitude. We verified a direct relationship between the value of the Lyapunov coefficient and the formation of two-soliton bonded/unbonded states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

References

  1. Avelar, A.T., Bazeia, D., Cardoso, W.B.: Modulation of breathers in the three-dimensional nonlinear Gross-Pitaevskii equation. Phys. Rev. E 82, 057601 (2010)

    Article  Google Scholar 

  2. Avelar, A.T., Bazeia, D., Cardoso, W.B., Losano, L.: Lump-like structures in scalar-field models in 1 + 1 dimensions. Phys. Lett. A 374, 222–227 (2009)

    Article  MATH  Google Scholar 

  3. Cardoso, W.B., Couto, H.L.C., Avelar, A.T., Bazeia, D.: Modulation of localized solutions in quadratic-cubic nonlinear Schrödinger equation with inhomogeneous coefficients. Commun. Nonlinear Sci. Numer. Simulat. 48, 474–483 (2017)

    Article  MATH  Google Scholar 

  4. Cardoso, W.B., Avelar, A.T., Bazeia, D.: Bright and dark solitons in a periodically attractive and expulsive potential with nonlinearities modulated in space and time. Nonl. Anal RWA 11, 4269–4274 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cardoso, W.B., Avelar, A.T., Bazeia, D.: Modulation of localized solutions in a system of two coupled nonlinear Schrödinger equations. Phys. Rev. E 86, 027601 (2012)

    Article  Google Scholar 

  6. Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Konotop, V.V.: Localized nonlinear waves in systems with time- and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)

    Article  Google Scholar 

  7. Avelar, A.T., Bazeia, D., Cardoso, W.B.: Solitons with cubic and quintic nonlinearities modulated in space and time. Phys. Rev. E 79, 025602(R) (2009)

    Article  Google Scholar 

  8. Cardoso, W.B., Avelar, A.T., Bazeia, D.: Modulation of breathers in cigar-shaped Bose-Einstein condensates. Phys. Lett. A 374, 2640–2645 (2010)

    Article  MATH  Google Scholar 

  9. Cardoso, W.B., Avelar, A.T., Bazeia, D., Hussein, M.S.: Solitons of two-component Bose-Einstein condensates modulated in space and time. Phys. Lett. A 374, 2356–2360 (2010)

    Article  MATH  Google Scholar 

  10. Calaça, L., Avelar, A.T., Bazeia, D., Cardoso, W.B.: Modulation of localized solutions for the Schrödinger equation with logarithm nonlinearity. Commun. Nonlinear Sci. Numer. Simulat. 19, 2928–2934 (2014)

    Article  MATH  Google Scholar 

  11. Couto, H.L.C., Avelar, A.T., Cardoso, W.B.: Effective equations for repulsive quasi-one dimensional Bose-Einstein condensates trapped with anharmonic transverse potentials. Ann. Phys. (Berlin) 530, 1700352 (2018)

    Article  MathSciNet  Google Scholar 

  12. dos Santos, M.C.P., Malomed, B.A., Cardoso, W.B.: Double-layer Bose-Einstein condensates: A quantum phase transition in the transverse direction, and reduction to two dimensions. Phys. Rev. E 102, 042209 (2020)

    Article  MathSciNet  Google Scholar 

  13. Salasnich, L., Malomed, B.A.: Localized modes in dense repulsive and attractive Bose-Einstein condensates with spin-orbit and Rabi couplings. Phys. Rev. A 87, 063625 (2013)

    Article  Google Scholar 

  14. Salasnich, L., Parola, A., Reatto, L.: Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates. Phys. Rev. A 65, 043614 (2002)

    Article  Google Scholar 

  15. Mateo, A.M., Delgado, V.: Effective mean-field equations for cigar-shaped and disk-shaped Bose-Einstein condensates. Phys. Rev. A 77, 013617 (2008)

    Article  Google Scholar 

  16. Salasnich, L., Malomed, B.A.: Solitons and solitary vortices in pancake-shaped Bose-Einstein condensates. Phys. Rev. A 79, 053620 (2009)

    Article  Google Scholar 

  17. Cardoso, W.B., Avelar, A.T., Bazeia, D.: One-dimensional reduction of the three-dimenstional Gross-Pitaevskii equation with two- and three-body interactions. Phys. Rev. E 83, 036604 (2011)

    Article  Google Scholar 

  18. Cardoso, W.B., Zeng, J., Avelar, A.T., Bazeia, D., Malomed, B.A.: Bright solitons from the nonpolynomial Schrödinger equation with inhomogeneous defocusing nonlinearities. Phys. Rev. E 88, 025201 (2013)

    Article  Google Scholar 

  19. Salasnich, L., Cardoso, W.B., Malomed, B.A.: Localized modes in quasi-two-dimensional Bose-Einstein condensates with spin-orbit and Rabi couplings. Phys. Rev. A 90, 033629 (2014)

    Article  Google Scholar 

  20. Yang, J., Tan, Y.: Fractal structure in the collision of vector solitons. Phys. Rev. Lett. 85, 3624 (2000)

    Article  Google Scholar 

  21. Cardoso, W.B., Teixeira, R.M.P.: Scattering of solitons in binary Bose-Einstein condensates with spin-orbit and Rabi couplings. Nonlinear Dyn. 96, 1147–1167 (2019)

    Article  MATH  Google Scholar 

  22. Teixeira, R.M.P., Cardoso, W.B.: Fractal scattering of Gaussian solitons in directional couplers with logarithmic nonlinearities. Phys. Lett. A 380, 2738–2749 (2016)

    Article  MathSciNet  Google Scholar 

  23. Xie, X.-Y., et al.: Dark soliton collisions for a fourth-order variable-coefficient nonlinear Schrödinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain or alpha helical protein. Nonlinear Dyn. 86, 131–135 (2016)

    Article  Google Scholar 

  24. Yang, C., et al.: Bright soliton interactions in a (2 + 1)-dimensional fourth-order variable-coefficient nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chain. Nonlinear Dyn. 95, 983–994 (2019)

    Article  MATH  Google Scholar 

  25. Wang, L., et al.: Bright soliton solutions of the (2+1)-dimensional generalized coupled nonlinear Schrödinger equation with the four-wave mixing term. Nonlinear Dyn. 104, 2613–2620 (2021)

    Article  Google Scholar 

  26. Stalin, S., Senthilvelan, M., Lakshmanan, M.: Energy-sharing collisions and the dynamics of degenerate solitons in the nonlocal Manakov system. Nonlinear Dyn 95, 1767–1780 (2019)

    Article  MATH  Google Scholar 

  27. Rao, J., He, J., Kanna, T., Mihalache, D.: Nonlocal M-component nonlinear Schrödinger equations: Bright solitons, energy-sharing collisions, and positons. Phys. Rev. E 102, 032201 (2020)

    Article  MathSciNet  Google Scholar 

  28. Elhadj, K.M., Al Sakkaf, L., Al Khawaja, U., Boudjemâa, A.: Singular soliton molecules of the nonlinear Schrödinger equation. Phys. Rev. E 101, 042221 (2020)

    Article  MathSciNet  Google Scholar 

  29. Sakaguchi, H., Malomed, B.A.: Resonant nonlinearity management for nonlinear Schrödinger solitons. Phys. Rev. E 70, 066613 (2004)

    Article  Google Scholar 

  30. Yanay, H., Khaykovich, L., Malomed, B.A.: Stabilization and destabilization of second-order solitons against perturbations in the nonlinear Schrödinger equation. Chaos 19, 033145 (2009)

    Article  MATH  Google Scholar 

  31. Yang, T.-M.: Super-regular breathers for an inhomogenous optical fiber system. Optik 207, 163851 (2020)

    Article  Google Scholar 

  32. Wang, Q., Li, X.: Collision properties of rogue waves in optical fiber. Opt. Commun. 435, 255–264 (2019)

    Article  Google Scholar 

  33. Meng, G.-Q., Pan, Y.-S., Xie, X.-Y.: Deformed breather and rogue waves for the inhomogeneous fourth-order nonlinear Schrödinger equation in alpha-helical proteins. Nonlinear Dyn. 100, 2779–2795 (2020)

    Article  Google Scholar 

  34. Cardoso, W.B., Leão, S.A., Avelar, A.T., Bazeia, D., Hussein, M.S.: Nonlinear Schrödinger equation with chaotic, random, and nonperiodic nonlinearity. Phys. Lett. A 374, 4594–4598 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Cardoso, W.B., Avelar, A.T., Bazeia, D.: Propagation of solitons in quasi-periodic nonlinear coupled waveguides. Braz. J. Phys. 51, 151–156 (2021)

    Article  Google Scholar 

  36. Kong, L.-Q., et al.: Soliton dynamics in the three-spine \(\alpha \)-helical protein with inhomogeneous effect. Nonlinear Dyn. 87, 83–92 (2017)

    Article  Google Scholar 

  37. Yin, J., Duan, X., Tian, L.: Optical secure communication modeled by the perturbed nonlinear Schrödinger equation. Opt. Quant. Electron. 49, 317 (2017)

    Article  Google Scholar 

  38. Konyukhov, A.I., Dorokhova, M.A., Melnikov, L.A., Plastun, A.S.: Inelastic collision and fusion of optical solitons in dispersion oscillating fiber. Laser Phys. Lett. 12, 055103 (2015)

    Article  Google Scholar 

  39. Konyukhov, A.I., Sysoliatin, A.A.: Generation of high-intensity optical breathers via soliton collision in fibres with variable dispersion. Laser Phys. 30, 015401 (2020)

    Article  Google Scholar 

  40. Iomin, A.: From power law to Anderson localization in nonlinear Schrödinger equation with nonlinear randomness. Phys. Rev. E 100, 052123 (2019)

    Article  MathSciNet  Google Scholar 

  41. dos Santos, M.C.P., Cardoso, W.B.: Anderson localization induced by interaction in linearly coupled binary Bose-Einstein condensates. Phys. Rev. E 103, 052210 (2021)

    Article  Google Scholar 

  42. Cardoso, W.B., Avelar, A.T., Bazeia, D.: Anderson localization of matter waves in chaotic potentials. Nonl. Anal. RWA 13, 755–763 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Cardoso, W.B., Leão, S.A., Avelar, A.T.: Anderson localization in the quintic nonlinear Schrödinger equation. Opt. Quant. Electron. 48, 388 (2016)

    Article  Google Scholar 

  44. dos Santos, M.C.P., Cardoso, W.B.: Influence of fourth-order dispersion on the Anderson localization. Nonlinear Dyn. 101, 611–618 (2020)

    Article  Google Scholar 

  45. Cardoso, W.B.: Localization of optical pulses in guided wave structures with only fourth order dispersion. Phys. Lett. A 383, 125898 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, New York (2003)

    Google Scholar 

  47. Pethick, C.J., Smith, H.: Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  48. Pitaevskii, L., Stringari, S.: Bose-Einstein Condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  49. Nguyen, J.H.V., Dyke, P., Luo, D., Malomed, B.A., Hulet, R.G.: Collisions of matter-wave solitons. Nature Phys. 10, 918–922 (2014)

    Article  Google Scholar 

  50. Ablowitz, M.A., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  51. Muruganandam, P., Adhikari, S.K.: Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap. Comput. Phys. Commun. 180, 1888–1912 (2009)

    Article  MATH  Google Scholar 

  52. Kartashov, Y.V., Astrakharchik, G.E., Malomed, B.A., Torner, L.: Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 1, 185–197 (2019)

    Article  Google Scholar 

  53. Redor, I., Barthélemy, E., Michallet, H., Onorato, M., Mordant, N.: Experimental evidence of a hydrodynamic soliton gas. Phys. Rev. Lett. 122, 214502 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Brazilian agencies CNPq (#312723/2018-0, #425718/2018-2, #306065/2019-3, #404913/2018-0 & #303469/2019-6), CAPES and FAPEG (PRONEM #201710267000540, PRONEX #201710267000503), and Paraiba State Research Foundation, PRONEX #0015/2019. This work was performed as part of the Brazilian National Institute of Science and Technology for Quantum Information (INCT-IQ #465469/2014-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. B. Cardoso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, W.B., Avelar, A.T. & Bazeia, D. Effects of chaotic perturbations on a nonlinear system undergoing two-soliton collisions. Nonlinear Dyn 106, 3469–3477 (2021). https://doi.org/10.1007/s11071-021-06962-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06962-7

Keywords

Navigation