Abstract
This paper aims to explore the working mechanism of sandwich-like meta-plates by periodically attaching nonlinear mass-beam-spring resonators for low-frequency wave attenuation. The nonlinear MBS resonator consists of a mass, a cantilever beam, and a spring to provide negative stiffness in the transverse vibration of the resonator; this stiffness is tunable by changing the parameters of the spring. Considering the nonlinear stiffness of the resonator, the energy method is applied to obtain the dispersion relation of the sandwich-like meta-plate, and the band-gap bounds related to the amplitude of the resonator are derived by dispersion analysis. For a finite-sized sandwich-like meta-plate with a fully free boundary condition subjected to external excitations, its dynamic equation is established by the Galerkin method. The frequency response analysis of the meta-plate is carried out by numerical simulation, with the band-gap range obtained in good agreement with that of the theoretical one. Results show that the band-gap range of the present meta-plate is tunable by designing the structural parameters of the MBS resonator. Furthermore, by analyzing the vibration suppression of the finite-sized meta-plate, it is observed that the nonlinearity of the resonators can widen the wave attenuation range of the meta-plate.



















Similar content being viewed by others
Data availability
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
References
Zhao, H.G., Liu, Y.Z., Wang, G., Wen, J.H., Yu, D.L., Han, X.Y., Wen, X.S.: Resonance modes and gap formation in a two-dimensional solid phononic crystal. Phys. Rev. B 72, 12301 (2005)
Fang, N., Xi, D.J., Xu, J.Y., Ambati, M., Srituravanich, W., Sun, C., Zhang, X.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006)
Deymier, P.A.: Acoustic Metamaterials and Phononic Crystals. Springer-Verlag, Berlin (2013)
D’Alessandro, L., Belloni, E., Ardito, R., Corigliano, A., Braghin, F.: Modeling and experimental verification of an ultra-wide bandgap in 3D phononic crystal. Appl. Phys. Lett. 109, 221907 (2016)
Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 040802 (2014)
Zhang, S., Park, Y.S., Li, J., Lu, X., Zhang, W., Zhang, X.: Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009)
Casadei, F., Dozio, L., Ruzzene, M., Cunefare, K.A.: Periodic shunted arrays for the control of noise radiation in an enclosure. J. Sound Vibr. 329, 3632–3646 (2010)
Chen, H., Chan, C.T.: Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007)
Cai, W., Chettiar, U.K., Kildishev, A.V., Shalaev, V.M.: Optical cloaking with metamaterials. Nat. Photon. 1, 224–227 (2007)
Zhu, R., Huang, G.L., Huang, H.H., Sun, C.T.: Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Phys. Lett. A 375, 2863–2867 (2011)
Madeo, A., Neff, P., Ghiba, I.-D., Rosi, G.: Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model. J. Mech. Phys. Solids 95, 441–479 (2016)
Sigalas, M.M., Economou, E.N.: Elastic and acoustic wave band structure. J. Sound Vibr. 158, 377–382 (1992)
Ma, J., Hou, Z., Assouar, B.M.: Opening a large full phononic band gap in thin elastic plate with resonant units. J. Appl. Phys. 115, 093508 (2014)
Benchabane, S., Khelif, A., Rauch, J.-Y., Robert, L., Laude, V.: Evidence for complete surface wave band gap in a piezoelectric phononic crystal. Phys. Rev. E 73, 065601 (2006)
Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)
Sun, H., Du, R., Pai, R.F.: Theory of metamaterial beams for broadband vibration absorption. J. Intel. Mat. Syst. Str. 21, 1085–1101 (2010)
Oudich, M., Senesi, M., Assouar, M.B., Ruzenne, M., Sun, J.H., Vincent, B., Hou, Z., Wu, T.T.: Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates. Phys. Rev. B 84, 667–673 (2011)
Ma, G., Sheng, P.: Acoustic metamaterials: From local resonances to broad horizons. Sci. Adv. 2, e150159 (2016)
Peng, H., Frank, P.P.: Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression. Int. J. Mech. Sci. 89, 350–361 (2014)
Al Ba"Ba", A.H.B., Attarzadeh, M.A., Nouh, M.: Experimental evaluation of structural intensity in two-dimensional plate-type locally resonant elastic metamaterials. J. Appl. Mech.-Trans. ASME 85, 041005 (2018)
Xiao, Y., Wen, J., Wen, X.: flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators. J. Phys. D Appl. Phys. 45, 195401 (2012)
Miranda, E.J.P., Nobrega, E.D., Ferreira, A.H.R., Dos Santos, J.M.C.: Flexural wave band gaps in a multi-resonator elastic metamaterial plate using Kirchhoff-Love theory. Mech. Syst. Signal Proc. 116, 480–504 (2019)
Lazarov, B.S., Jensen, J.S.: Low-frequency band gaps in chains with attached non-linear oscillators. Int. J. Non-Linear Mech. 42, 1186–1193 (2007)
Wang, K., Zhou, J., Xu, D., Ouyang, H.: Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mech. Syst. Signal Proc. 124, 664–678 (2019)
Zhou, X., Wang, L.: Opening complete band gaps in two dimensional locally resonant phononic crystals. J. Phys. Chem. Solids 116, 174–179 (2018)
Wang, Q., Li, J., Zhang, Y., Xue, Y., Li, F.: Bandgap properties in metamaterial sandwich plate with periodically embedded plate-type resonators. Mech. Syst. Signal Proc. 151, 107375 (2021)
Qian, D., Shi, Z.: Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring–mass resonators. Phys. Lett. A 380, 3319–3325 (2016)
Raghavan, L., Phani, A.S.: Local resonance bandgaps in periodic media: theory and experiment. J. Acoust. Soc. Am. 134, 1950–1959 (2013)
Jung, J., Kim, H.-G., Goo, S., Chang, K.-J., Wang, S.: Realisation of a locally resonant metamaterial on the automobile panel structure to reduce noise radiation. Mech. Syst. Signal Proc. 122, 206–231 (2019)
Bilal, O.R., Hussein, M.I.: Trampoline metamaterial: local resonance enhancement by springboards. Appl. Phys. Lett. 103, 2022–2025 (2013)
Xiao, Y., Wen, J., Huang, L., Wen, X.: Analysis and experimental realization of locally resonant phononic plates carrying a periodic array of beam-like resonators. J. Phys. D Appl. Phys. 47, 045307 (2013)
Huang, T.Y., Shen, C., Jing, Y.: Membrane- and plate-type acoustic metamaterials. J. Acoust. Soc. Am. 139, 3240–3250 (2016)
Nayfeh, A.H., Mook, D.: Nonlinear oscillations. Clarendon, Oxford (1981)
Moon, F.C.: Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers. Wiley, Hoboken (1992)
Zhou, J., Dou, L., Wang, K., Xu, D., Ouyang, H.: A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams. Nonlinear Dyn. 96, 647–665 (2019)
Wu, Z., Liu, W., Li, F., Zhang, C.: Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators. Mech. Syst. Signal Proc. 134, 106357 (2019)
Chen, Z., Zhou, W., Lim, C.W.: Active control for acoustic wave propagation in nonlinear diatomic acoustic metamaterials. Int. J. Non-Linear Mech. 125, 103535 (2020)
Li, Z.-N., Wang, Y.-Z., Wang, Y.-S.: Three-dimensional nonreciprocal transmission in a layered nonlinear elastic wave metamaterial. Int. J. Non-Linear Mech. 125, 103531 (2020)
Casalotti, A., El-Borgi, S., Lacarbonara, W.: Metamaterial beam with embedded nonlinear vibration absorbers. Int. J. Non-Linear Mech. 98, 32–42 (2018)
Zhang, H., Cheng, X., Yan, D., Zhang, Y., Fang, D.: A nonlinear mechanics model of soft network metamaterials with unusual swelling behavior and tunable phononic band gaps. Compos. Sci. Technol. 183, 107822 (2019)
Khajehtourian, R., Hussein, M.I.: Dispersion characteristics of a nonlinear elastic metamaterial. AIP Adv. 4, 124308 (2014)
Hussein, M.I., Khajehtourian, R.: Nonlinear Bloch waves and balance between hardening and softening dispersion. Proc. Math. Phys. Eng. Sci. 474, 20180173 (2018)
Manktelow, K., Narisetti, R.K., Leamy, M.J., Ruzzene, M.: Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures. Mech. Syst. Signal Proc. 39, 32–46 (2013)
Kundu, T., Packo, P., Staszewski, W.J., Uhl, T., Leamy, M.J.: Perturbation approach to dispersion curves calculation for nonlinear Lamb waves. Proc. of SPIE 9438, 94381V (2015)
Packo, P., Uhl, T., Staszewski, W.J., Leamy, M.J.: Amplitude-dependent Lamb wave dispersion in nonlinear plates. J. Acoust. Soc. Am. 140, 1319 (2016)
Silva, P.B., Leamy, M.J., Geers, M.G.D., Kouznetsova, V.G.: Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance. Phys. Rev. E 99, 063003 (2019)
Fronk, M.D., Leamy, M.J.: Internally resonant wave energy exchange in weakly nonlinear lattices and metamaterials. Phys. Rev. E 100, 032213 (2019a)
Fronk, M.D., Leamy, M.J.: Isolated frequencies at which nonlinear materials behave linearly. Phys. Rev. E 100, 051002 (2019b)
Narisetti, R.K., Leamy, M.J., Ruzzene, M.: A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. 132, 031001 (2010)
Wang, K., Zhou, J., Cai, C., Xu, D., Ouyang, H.: Mathematical modeling and analysis of a meta-plate for very low-frequency band gap. Appl. Math. Model. 73, 581–597 (2019)
Fang, X., Wen, J., Yu, D., Yin, J.: Bridging-coupling band gaps in nonlinear acoustic metamaterials. Phys. Rev. Appl. 10, 054049 (2018)
Campana, M.A., Ouisse, M., Sadoulet-Reboul, E., Ruzzene, M., Neild, S., Scarpa, F.: Impact of non-linear resonators in periodic structures using a perturbation approach. Mech. Syst. Signal Proc. 135, 106408 (2020)
Emerson, T.A., Manimala, J.M.: Passive-adaptive mechanical wave manipulation using nonlinear metamaterial plates. Acta Mech. 231, 4665–4681 (2020)
Xia, Y., Ruzzene, M., Erturk, A.: Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam. Nonlinear Dyn. 102, 1285–1296 (2020)
Li, J., Fan, X., Li, F.: Numerical and experimental study of a sandwich-like metamaterial plate for vibration suppression. Compos. Struct. 238, 111969 (2020)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 12072084, 11902093 and 11761131006), the Ph.D. Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities (No. 3072020GIP0206) and Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest concerning the publication of this manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xue, Y., Li, J., Wang, Y. et al. Tunable nonlinear band gaps in a sandwich-like meta-plate. Nonlinear Dyn 106, 2841–2857 (2021). https://doi.org/10.1007/s11071-021-06961-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-021-06961-8