Skip to main content
Log in

Spatiotemporal patterns in a general networked activator–substrate model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To understand the spatiotemporal pattern formation in the random networked system, a general activator–substrate model with network structure is introduced. Firstly, we investigate the boundedness of the non-constant steady state of the elliptic system of the continuous medium system. It is found that the non-constant steady state admits their upper and lower bounds under certain conditions. Then, we establish some properties and nonexistence of the non-constant steady state with the no-flux boundary conditions. The main results show that the diffusion rate of the activator should be less than that of the substrate. Otherwise, there might be no pattern formation of the system. Afterward, a general random networked activator–substrate model is presented. Conditions of the stability, the Hopf bifurcation, the Turing instability and the co-dimensional-two Turing–Hopf bifurcation are yielded by the method of stability analysis and bifurcation theory. Finally, a suitable sub-system of the general activator–substrate model is chosen to verify the theoretical results, and full numerical simulations have well verified these results. Especially, an interesting finding is that the stability of the positive equilibrium will switch from unstable to stable one with the change of the connection probability of the nodes, which is different from the pattern formation in the continuous medium systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article or available upon request.

References

  1. Chen, M.X., Wu, R.C., Chen, L.P.: Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system. Appl. Math. Comput. 380, 125300 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Wang, J.F., Wu, S.N., Shi, J.P.: Pattern formation in diffusive preydator-prey systems with predator-taxis and prey-taxis. Discret. Cont. Dyn. Syst. B 26(3), 1273–1289 (2021)

    MATH  Google Scholar 

  3. Wang, W., Liu, S.T., Tian, D.D., et al.: Pattern dynamics in a toxin-producing phytoplankton-zooplankton model with additional food. Nonlinear Dyn. 94(1), 211–228 (2018)

    Article  Google Scholar 

  4. Berenstein, I.: Standing wave-like patterns in the Gray-Scott model. Chaos 25(6), 064301 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chen, M.X., Wu, R.C., Liu, B., Chen, L.P.: Hopf-Hopf bifurcation in the delayed nutrient-microorganism model. Appl. Math. Model. 86, 460–483 (2020)

    Article  MathSciNet  Google Scholar 

  6. Tan, W., Yu, W.W., Hayat, T., et al.: Turing instability and bifurcation in a diffusion predator-prey model with Beddington-DeAngelis functional response. Int. J. Bifurcat. Chaos 28(9), 1830029 (2018)

    Article  MathSciNet  Google Scholar 

  7. Pal, S., Petrovskii, S., Ghorai, S., Banerjee, M.: Spatiotemporal pattern formation in 2D prey-predator system with nonlocal intraspecific competition. Commun. Nonlinear Sci. Numer. Simul. 93, 105478 (2021)

    Article  MathSciNet  Google Scholar 

  8. Chen, M.X., Wu, R.C., Chen, L.P.: Pattern dynamics in a diffusive Gierer-Meinhardt model. Int. J. Bifurcat. Chaos 30(12), 2030035 (2020)

    Article  MathSciNet  Google Scholar 

  9. Song, Y.L., Jiang, H.P., Yuan, Y.: Turing-Hopf bifurcation in the reaction-diffusion system with delay and application to a diffusive predator-prey model. J. Appl. Anal. Comput. 9(3), 1132–1164 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Chen, M.X., Wu, R.C., Liu, B., et al.: Spatiotemporal dynamics in a ratio-dependent predator-prey model with time delay near the Turing-Hopf bifurcation point. Commun. Nonlinear Sci. Numer. Simul. 77, 141–167 (2019)

    Article  MathSciNet  Google Scholar 

  11. Asllani, M., Challenger, J.D., Pavone, F.S., et al.: The theory of pattern formation on directed networks. Nat. Commun. 5(1), 1–9 (2014)

    Article  Google Scholar 

  12. Diego, X., Marcon, L., M\(\ddot{\text{u}}\)ller, P., Sharpe, J.: Key features of Turing systems are determined purely by network topology. Phys. Rev. X 8, 021071 (2018)

  13. Chang, L.L., Liu, C., Sun, G.Q., et al.: Delay-induced patterns in a predator-prey model on complex networks with diffusion. New J. Phys. 21, 073035 (2019)

    Article  MathSciNet  Google Scholar 

  14. Tian, C.R., Ling, Z., Zhang, L.: Delay-driven spatial patterns in a network-organized semiarid vegetation model. Appl. Math. Comput. 367, 124778 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Mimar, S., Juane, M.M., Park, J., et al.: Turing patterns mediated by network topology in homogeneous active systems. Phys. Rev. E 99(6), 062303 (2019)

    Article  Google Scholar 

  16. Nakao, H., Mikhailov, A.S.: Turing patterns in network-organized activator-inhibitor systems. Nat. Phys. 6, 544–550 (2010)

    Article  Google Scholar 

  17. Wyller, J., Blomquist, P., Einevoll, G.T.: Turing instability and pattern formation in a two-population neuronal network model. Phys. D 225, 75–93 (2007)

    Article  MathSciNet  Google Scholar 

  18. Tian, C.R., Ruan, S.G.: Pattern formation and synchronism in an allelopathic plankton model with delay in a network. SIAM J. Appl. Dyn. Syst. 18(1), 531–557 (2019)

    Article  MathSciNet  Google Scholar 

  19. Zheng, Q.Q., Shen, J.W.: Turing instability induced by random network in FitzHugh-Nagumo model. Appl. Math. Comput. 381, 125304 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  Google Scholar 

  21. Meinhardt, H., Klingler, M.: A model for pattern formation on the shells of molluscs. J. Theor. Biol. 126, 63–89 (1987)

    Article  MathSciNet  Google Scholar 

  22. Fowlery, D.R., Meinhardtz, H., Prusinkiewicz, P.: Modeling seashells. Comput. Graph. 26(2), 379–387 (1992)

    Article  Google Scholar 

  23. Wu, R.C., Shao, Y., Zhou, Y., Chen, L.P.: Turing and Hopf bifurcation of Giere-Meinhardt activator-substrate model. Electron. J. Differ. Equ. 173, 1–19 (2017)

    MATH  Google Scholar 

  24. Wang, Y.E., Wu, J.H., Jia, Y.F.: Steady-state bifurcation for a biological depletion model. Int. J. Bifurcat. Chaos 26(4), 1650066 (2016)

    Article  MathSciNet  Google Scholar 

  25. Kelkel, J., Surulescu, C.: A weak solution approach to a reaction-diffusion system modeling pattern formation on seashells. Math. Meth. Appl. Sci. 32, 2267–2286 (2009)

    Article  MathSciNet  Google Scholar 

  26. Lou, Y., Ni, W.M.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131(1), 79–131 (1996)

    Article  MathSciNet  Google Scholar 

  27. Lin, C.S., Ni, W.M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis system. J. Differ. Eq. 72(1), 1–27 (1988)

    Article  MathSciNet  Google Scholar 

  28. Kelkel, J., Surulescu, C.: On a stochastic reaction-diffusion system modeling pattern formation on seashells. J. Math. Biol. 60, 765–796 (2010)

    Article  MathSciNet  Google Scholar 

  29. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11971032, 62073114) and Young Talent Support Project of Henan (2020HY TP012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranchao Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Zheng, Q., Wu, R. et al. Spatiotemporal patterns in a general networked activator–substrate model. Nonlinear Dyn 106, 3521–3538 (2021). https://doi.org/10.1007/s11071-021-06938-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06938-7

Keywords

Navigation