Skip to main content
Log in

Convergence boundaries of complex-order particle swarm optimization algorithm with weak stagnation: dynamical analysis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the area of particle swarm optimization (PSO) algorithms and, in particular, investigates the dynamics of the complex-order PSO (COPSO). The core of the COPSO adopts the concepts of complex derivative and conjugate order differential in the position and velocity adaption mechanisms to improve the algorithmic performance. The work focuses on the analytical stability analysis of the COPSO in the case of weak stagnation. The COPSO is formulated in the form of a control structure, and the particle dynamics are represented as a nonlinear feedback element. In a first phase, a state-space representation of the different types of COPSO is constructed as a delayed discrete-time system for describing the historical memory of particles. In a second phase, the existence and the uniqueness of the equilibrium point of the COPSO variants are discussed and the stability analysis is derived analytically to determine the convergence boundaries of the COPSO dynamics with weak stagnation. Simulations illustrate the proposed ideas, such as the area of stability of the COPSO equilibrium point and the performance of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ackermann, J.: Sampled-data control systems. In: Analysis and Synthesis, Robust System Design. Springer Science and Business Media, Berlin (2012)

  2. Adams, J.L., Hartley, T.T., Lorenzo, C.F.: Complex order-distributions using conjugated order differintegrals. In: Advances in Fractional Calculus, pp. 347–360. Springer, Berlin (2007)

  3. Alfi, A.: PSO with adaptive mutation and inertia weight and its application in parameter estimation of dynamic systems. Acta Autom. Sin. 37(5), 541–549 (2011)

    MATH  Google Scholar 

  4. Alfi, A., Fateh, M.M.: Intelligent identification and control using improved fuzzy particle swarm optimization. Expert Syst. Appl. 38(10), 12312–12317 (2011)

    Article  Google Scholar 

  5. Alfi, A., Modares, H.: System identification and control using adaptive particle swarm optimization. Appl. Math. Model. 35(3), 1210–1221 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbosa, R.S., Tenreiro Machado, J., Silva, M.F.: Discretization of complex-order algorithms for control applications. J. Vib. Control 14(9–10), 1349–1361 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blackwell, T., Kennedy, J.: Impact of communication topology in particle swarm optimization. IEEE Trans. Evol. Comput. 23(4), 689–702 (2018)

    Article  Google Scholar 

  8. Bonyadi, M.R., Michalewicz, Z.: Analysis of stability, local convergence, and transformation sensitivity of a variant of the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 20(3), 370–385 (2015)

    Article  Google Scholar 

  9. Bonyadi, M.R., Michalewicz, Z.: Stability analysis of the particle swarm optimization without stagnation assumption. IEEE Trans. Evol. Comput. 20(5), 814–819 (2015)

    Article  Google Scholar 

  10. Cagnoni, S., Mordonini, M., Sartori, J.: Particle swarm optimization for object detection and segmentation. In: Workshops on Applications of Evolutionary Computation, pp. 241–250. Springer, Berlin (2007)

  11. Cao, Y., Zhang, H., Li, W., Zhou, M., Zhang, Y., Chaovalitwongse, W.A.: Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions. IEEE Trans. Evol. Comput. 23(4), 718–731 (2018)

    Article  Google Scholar 

  12. Chatterjee, A., Siarry, P.: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper. Res. 33(3), 859–871 (2006)

    Article  MATH  Google Scholar 

  13. Chen, K.F.: GEM-PSO: Particle swarm optimization guided by enhanced memory. Honors Projects. 103, Department of Computer Science, Bowdoin College, 2019 (2019)

  14. Cheng, R., Jin, Y.: A social learning particle swarm optimization algorithm for scalable optimization. Inf. Sci. 291, 43–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cleghorn, C.W., Engelbrecht, A.P.: A generalized theoretical deterministic particle swarm model. Swarm Intell. 8(1), 35–59 (2014)

    Article  Google Scholar 

  16. Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption. Swarm Intell. 12(1), 1–22 (2018)

    Article  Google Scholar 

  17. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  18. Coello, C.A.C.: Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 41(2), 113–127 (2000)

    Article  Google Scholar 

  19. Couceiro, M., Ghamisi, P.: Fractional-order Darwinian PSO. In: Fractional order Darwinian Particle Swarm Optimization, pp. 11–20. Springer, Berlin (2016)

  20. Couceiro, M., Sivasundaram, S.: Novel fractional order particle swarm optimization. Appl. Math. Comput. 283, 36–54 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Darabi, A., Alfi, A., Kiumarsi, B., Modares, H.: Employing adaptive particle swarm optimization algorithm for parameter estimation of an exciter machine. J. Dyn. Syst. Meas. Control 134(1), (2012)

  22. Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)

    Article  Google Scholar 

  23. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol. 1, pp. 84–88. IEEE (2000)

  24. Fang, W., Sun, J., Chen, H., Wu, X.: A decentralized quantum-inspired particle swarm optimization algorithm with cellular structured population. Inf. Sci. 330, 19–48 (2016)

    Article  Google Scholar 

  25. Fernandez-Martinez, J.L., Garcia-Gonzalo, E.: Stochastic stability analysis of the linear continuous and discrete PSO models. IEEE Trans. Evol. Comput. 15(3), 405–423 (2010)

    Article  Google Scholar 

  26. Fong, C.W., Asmuni, H., McCollum, B.: A hybrid swarm-based approach to university timetabling. IEEE Trans. Evol. Comput. 19(6), 870–884 (2015)

    Article  Google Scholar 

  27. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

    Article  MATH  Google Scholar 

  28. Ghamisi, P., Benediktsson, J.A.: Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geosci. Remote Sens. Lett. 12(2), 309–313 (2014)

    Article  Google Scholar 

  29. Hartley, T.T., Lorenzo, C.F., Adams, J.L.: Conjugated-order differintegrals. In: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1597–1602. American Society of Mechanical Engineers (2005)

  30. Hu, M., Wu, T., Weir, J.D.: An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans. Evol. Comput. 17(5), 705–720 (2012)

    Article  Google Scholar 

  31. Jiang, M., Luo, Y.P., Yang, S.Y.: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf. Process. Lett. 102(1), 8–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kadirkamanathan, V., Selvarajah, K., Fleming, P.J.: Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans. Evol. Comput. 10(3), 245–255 (2006)

    Article  Google Scholar 

  33. Kennedy, J.: Particle swarm optimization. Encyclopedia of machine learning, pp. 760–766 (2010)

  34. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp. 1671–1676. IEEE (2002)

  35. Li, J., Zhang, J., Jiang, C., Zhou, M.: Composite particle swarm optimizer with historical memory for function optimization. IEEE Trans. Cybern. 45(10), 2350–2363 (2015)

    Article  Google Scholar 

  36. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  37. Lin, A., Sun, W., Yu, H., Wu, G., Tang, H.: Global genetic learning particle swarm optimization with diversity enhancement by ring topology. Swarm Evol. Comput. 44, 571–583 (2019)

    Article  Google Scholar 

  38. Liu, Q.: Order-2 stability analysis of particle swarm optimization. Evol. Comput. 23(2), 187–216 (2015)

    Article  Google Scholar 

  39. Liu, Q., Wei, W., Yuan, H., Zhan, Z.H., Li, Y.: Topology selection for particle swarm optimization. Inf. Sci. 363, 154–173 (2016)

    Article  Google Scholar 

  40. Liu, X.F., Zhan, Z.H., Gao, Y., Zhang, J., Kwong, S., Zhang, J.: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization. IEEE Trans. Evol. Comput. 23(4), 587–602 (2018)

    Article  Google Scholar 

  41. Lynn, N., Suganthan, P.N.: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol. Comput. 24, 11–24 (2015)

    Article  Google Scholar 

  42. Machado, J.T.: Optimal controllers with complex order derivatives. J. Optim. Theory Appl. 156(1), 2–12 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Machado, J.T., Pahnehkolaei, S.M.A., Alfi, A.: Complex-order particle swarm optimization. Commun. Nonlinear Sci. Numer. Simul. 92, 105448 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer Science and Business Media, Berlin (2010)

    Book  MATH  Google Scholar 

  45. Mousavi, Y., Alfi, A.: Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems. Chaos Solitons Fract. 114, 202–215 (2018)

    Article  MATH  Google Scholar 

  46. Nasiri, B., Meybodi, M., Ebadzadeh, M.: History-driven particle swarm optimization in dynamic and uncertain environments. Neurocomputing 172, 356–370 (2016)

    Article  Google Scholar 

  47. Pavão, L.V., Costa, C.B.B., Ravagnani, M.: Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization. Chem. Eng. Sci. 158, 96–107 (2017)

    Article  Google Scholar 

  48. Pinto, C.M., Machado, J.T.: Complex order Van der Pol oscillator. Nonlinear Dyn. 65(3), 247–254 (2011)

    Article  MathSciNet  Google Scholar 

  49. Pires, E.S., Machado, J.T., de Moura Oliveira, P., Cunha, J.B., Mendes, L.: Particle swarm optimization with fractional-order velocity. Nonlinear Dyn. 61(1–2), 295–301 (2010)

    Article  MATH  Google Scholar 

  50. Poli, R.: Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Trans. Evol. Comput. 13(4), 712–721 (2009)

    Article  Google Scholar 

  51. Qin, Q., Cheng, S., Zhang, Q., Li, L., Shi, Y.: Particle swarm optimization with interswarm interactive learning strategy. IEEE Trans. Cybern. 46(10), 2238–2251 (2015)

    Article  Google Scholar 

  52. Samal, N.R., Konar, A., Das, S., Abraham, A.: A closed loop stability analysis and parameter selection of the particle swarm optimization dynamics for faster convergence. In: 2007 IEEE Congress on Evolutionary Computation, pp. 1769–1776. IEEE (2007)

  53. Sandgren, E.: Nonlinear integer and discrete programming in mechanical design optimization. J. Mech. Des. 112(2), 223–229 (1990)

    Article  Google Scholar 

  54. Shahri, E.S.A., Alfi, A., Machado, J.T.: Fractional fixed-structure H\(\infty \) controller design using augmented Lagrangian particle swarm optimization with fractional order velocity. Appl. Soft Comput. 77, 688–695 (2019)

    Article  Google Scholar 

  55. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360), pp. 69–73. IEEE (1998)

  56. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: International Conference on Evolutionary Programming, pp. 591–600. Springer, Berlin (1998)

  57. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1945–1950. IEEE (1999)

  58. Shokri-Ghaleh, H., Alfi, A., Ebadollahi, S., Shahri, A.M., Ranjbaran, S.: Unequal limit cuckoo optimization algorithm applied for optimal design of nonlinear field calibration problem of a triaxial accelerometer. Measurement 164, 107963 (2020)

    Article  Google Scholar 

  59. Silva, M.F., Machado, J.T., Barbosa, R.S.: Complex-order dynamics in hexapod locomotion. Signal Process. 86(10), 2785–2793 (2006)

    Article  MATH  Google Scholar 

  60. Song, X.F., Zhang, Y., Guo, Y.N., Sun, X.Y., Wang, Y.l.: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data. IEEE Trans. Evol. Comput. (2020)

  61. Suganthan, P.N.: Particle swarm optimiser with neighbourhood operator. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1958–1962. IEEE (1999)

  62. Taherkhani, M., Safabakhsh, R.: A novel stability-based adaptive inertia weight for particle swarm optimization. Appl. Soft Comput. 38, 281–295 (2016)

    Article  Google Scholar 

  63. Ugarte, J.P., Tobon, C., Lopes, A.M., Machado, J.T.: A complex order model of atrial electrical propagation from fractal porous cell membrane. Fractals (2020)

  64. Wei, J., Guang-bin, L.: An improved particle swarm optimization algorithm with immunity. In: 2009 Second International Conference on Intelligent Computation Technology and Automation, vol. 1, pp. 241–244. IEEE (2009)

  65. Xia, X., Xing, Y., Wei, B., Zhang, Y., Li, X., Deng, X., Gui, L.: A fitness-based multi-role particle swarm optimization. Swarm Evol. Comput. 44, 349–364 (2019)

    Article  Google Scholar 

  66. Xu, L., Muhammad, A., Pu, Y., Zhou, J., Zhang, Y.: Fractional-order quantum particle swarm optimization. PLoS ONE 14(6), e0218285 (2019)

    Article  Google Scholar 

  67. Yang, P.Y., Chou, F.I., Tsai, J.T., Chou, J.H.: Adaptive-uniform-experimental-design-based fractional-order particle swarm optimizer with non-linear time-varying evolution. Appl. Sci. 9(24), 5537 (2019)

    Article  Google Scholar 

  68. Yasuda, K., Iwasaki, N., Ueno, G., Aiyoshi, E.: Particle swarm optimization: a numerical stability analysis and parameter adjustment based on swarm activity. IEEJ Trans. Electr. Electron. Eng. 3(6), 642–659 (2008)

    Article  Google Scholar 

  69. Zhang, X., Wang, X., Kang, Q., Cheng, J.: Differential mutation and novel social learning particle swarm optimization algorithm. Inf. Sci. 480, 109–129 (2019)

    Article  Google Scholar 

Download references

Funding

No funding was received

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Alfi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi Pahnehkolaei, S.M., Alfi, A. & Machado, J.A.T. Convergence boundaries of complex-order particle swarm optimization algorithm with weak stagnation: dynamical analysis. Nonlinear Dyn 106, 725–743 (2021). https://doi.org/10.1007/s11071-021-06862-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06862-w

Keywords

Navigation