Skip to main content

Advertisement

Log in

Parameter identification of nonlinear bistable piezoelectric structures by two-stage subspace method

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

System parameters identification of nonlinear bistable structures has attracted considerable interest because the performance enhancement of energy harvesting and vibration control is significantly dependent on the model parameter of nonlinear systems. Therefore, a two-stage subspace method is proposed to identify the critical parameters in the system equation of nonlinear bistable piezoelectric structures. The dynamic equation of nonlinear bistable piezoelectric structures is separated into an underlying linear electromechanical coupling equation and a nonlinear mechanical equation. At first, for the underlying linear electromechanical coupling equation, a force–displacement subspace is constructed to identify the linear mass, damping and stiffness. Meanwhile, a velocity–voltage subspace is created for the identification of the electromechanical coupling coefficient. Next, for the nonlinear mechanical equation, the nonlinear restoring force in bistable structures can be estimated by the extended nonlinear frequency response function. Numerical simulation on a magnetic coupled bistable piezoelectric structure is performed to investigate the influence of frequency-swept responses, the noise intensity and polynomial order on identification accuracy. Experimental measurement of a magnetic coupled asymmetric bistable piezoelectric beam is conducted under different excitation conditions. Experimental results demonstrate the effectiveness of the proposed identification method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Figure 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

These data are collected by the experiment.

Code availability

The code is written according to the proposed model.

References

  1. Harne, R.L., Wang, K.W.: Harnessing Bistable Structural Dynamics: For Vibration Control. Energy Harvesting and Sensing. Wiley, West Sussex (2017)

    Book  MATH  Google Scholar 

  2. Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011)

    Article  Google Scholar 

  3. Emam, S.A., Inman, D.J.: A review on bistable composite laminates for morphing and energy harvesting. Appl. Mech. Rev. 67, 060803 (2015)

    Article  Google Scholar 

  4. Leadenham, S., Erturk, A.: Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dyn. 79, 1727–1743 (2015)

    Article  Google Scholar 

  5. Kim, P., Nguyen, M.S., Kwon, O., Kim, Y.J., Yoon, Y.J.: Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester. Sci. Rep. 6, 34411 (2016)

    Article  Google Scholar 

  6. Singh, K.A., Kumar, R., Weber, R.J.: A broadband bistable piezoelectric energy harvester with nonlinear high-power extraction. IEEE Trans. Power Electr. 30, 6763–6774 (2015)

    Article  Google Scholar 

  7. Lan, C., Tang, L., Qin, W., Xiong, L.: Magnetically coupled dual-beam energy harvester Benefit and trade-off. J. Intell. Mat. Syst. Str. 29, 1216–1235 (2017)

    Article  Google Scholar 

  8. Zhou, S.X., Cao, J.Y., Lin, J.: Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl. Phys. Lett. 102, 101301-R21 (2013)

    Article  Google Scholar 

  9. Masana, R., Daqaq, M.F.: Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J. Vib. Acoust. 133, 011007.1-011007.10 (2011)

    Article  Google Scholar 

  10. Zhang, J., Zhang, J., Shu, C., Fang, Z.: Enhanced piezoelectric wind energy harvesting based on a buckled beam. Appl. Phys. Lett. 110, 3–468 (2017)

    Article  Google Scholar 

  11. Hwang, M., Arrieta, A.F.: Input-independent energy harvesting in bistable lattices from transition waves. Sci. Rep. 8, 3630 (2018)

    Article  Google Scholar 

  12. Xia, Y., Ruzzene, M., Erturk, A.: Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam. Nonlinear Dyn. 102, 1–12 (2020)

    Article  Google Scholar 

  13. Erturk, A., Hoffmann, J., Inman, D.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102-254102–3 (2009)

    Article  Google Scholar 

  14. Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D 239, 640–653 (2010)

    Article  MATH  Google Scholar 

  15. Cao, J.Y., Zhou, S.X., Inman, D., Lin, J.: Nonlinear dynamic characteristics of variable inclination magnetically coupled piezoelectric energy harvesters. J. Vib. Acoust. 137, 9 (2015)

    Article  Google Scholar 

  16. Leadenham, S., Erturk, A.: M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: harmonic balance analysis and experimental validation. J. Sound Vib. 333, 6209–6223 (2014)

    Article  Google Scholar 

  17. Leadenham, S., Erturk, A.: Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances. Smart Mater. Struct. 333, 6209–6223 (2015)

    Google Scholar 

  18. Masana, R., Daqaq, M.: Response of duffing-type harvesters to band-limited noise. J. Sound Vib. 332, 6755–6767 (2013)

    Article  Google Scholar 

  19. Stanton, S.C., Mann, B., Inman, D.: Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J. Appl. Phys. 108, R175 (2010)

    Article  Google Scholar 

  20. Zhou, S.X., Cao, J.Y., Inman, D., Lin, J., Liu, S., Wang, Z.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 313, 33–39 (2014)

    Google Scholar 

  21. Yuan, T.C., Yang, J., Chen, L.Q.: Nonparametric identification of nonlinear piezoelectric mechanical systems. J. Appl. Mech. 85, 1110081–11100813 (2018)

    Article  Google Scholar 

  22. Yuan, T.C., Yang, J., Chen, L.Q.: Experimental identification of hardening and softening nonlinearity in circular laminated plates. Int. J. Non-Linear Mech. 95, 296–306 (2017)

    Article  Google Scholar 

  23. Nico, V., Frizzell, R., Punch, J.: Nonlinear analysis of a two-degree-of-freedom vibration energy harvester using high order spectral analysis techniques. Smart Mater. Struct. 26, 045029 (2017)

    Article  Google Scholar 

  24. Harris, P., Arafa, M., Litak, G., Bowen, C., Iwaniec, J.: Output response identification in a multistable system for piezoelectric energy harvesting. Eur. Phys. J. B 90, 20 (2016)

    Article  Google Scholar 

  25. Marchesiello, S., Garibaldi, L.: A time domain approach for identifying nonlinear vibrating structures by subspace methods. Mech. Syst. Signal Process. 22, 81–101 (2008)

    Article  Google Scholar 

  26. Noël, J.P., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83, 2–35 (2017)

    Article  Google Scholar 

  27. Ghamami, M., Nahvi, H., Yaghoubi, V.: Automated modal parameters identification of bistable composite plate using two-stage clustering of operational modal testing. J. Compos. Mater. 1, 1–14 (2020)

    Google Scholar 

  28. Mostafaei, H., Ghamami, M., Aghabozorgi, P.: Modal identification of concrete arch dam by fully automated operational modal identification. Structures 32, 228–236 (2021)

    Article  Google Scholar 

  29. Noël, J.P., Renson, L., Kerschen, G.: Complex dynamics of a nonlinear aerospace structure: experimental identification and modal interactions. J. Sound. Vib. 333, 2588–2607 (2014)

    Article  Google Scholar 

  30. Filippis, G.D, Noël, J.P., Kerschen, G., Soria, L., Stephan, C.: Experimental nonlinear identification of an aircraft with bolted connections. In: International Modal Analysis Conference (IMAC) XXXIII (2015)

  31. Noël, J.P., Kerschen, G.: Frequency-domain subspace identification of nonlinear mechanical systems—application to a solar array structure. Mech. Syst. Signal Process. 40, 701–717 (2013)

    Article  Google Scholar 

  32. Liu, J., Li, B., Miao, H., Zhang, X., Li, M.: A modified time domain subspace method for nonlinear identification based on nonlinear separation strategy. Nonlinear Dyn. 94, 1–19 (2018)

    Article  Google Scholar 

  33. Zhang, M.W., Wei, S., Peng, Z., Dong, X.J., Zhang, W.: A two-stage time domain subspace method for identification of nonlinear vibrating structures. Int. J. Mech. Sci. 120, 81–90 (2017)

    Article  Google Scholar 

  34. Anastasio, D., Marchesiello, S., Kerschen, G., Noël, J.P.: Experimental identification of distributed nonlinearities in the modal domain. J. Sound. Vib. 458, 426–444 (2019)

    Article  Google Scholar 

  35. Adams, D.E., Allemang, R.J.: A frequency domain method for estimating the parameters of a non-linear structural dynamic model through feedback. Mech. Syst. Signal Process. 14, 637–656 (2000)

    Article  Google Scholar 

  36. Overschee, P.V., Moor, B.D.: Subspace identification for linear systems. Springer, Boston (1996)

    Book  MATH  Google Scholar 

  37. Overschee, P. V., Moor, B. D.: N4SID: numerical algorithms for state space subspace system identification. In: Proceedings of the World Congress of the International Federation of Automatic Control, vol. 7, pp. 361–364 (1993)

  38. Verhaegen, M.: Identification of the deterministic part of MIMO state space models given in innovations form from input–output data. Automatica (Special Issue on Statistical Signal Processing and Control) 30, 61–74 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Wei, S., Peng, Z.K., Dong, X.J., Zhang, W.M.: A nonlinear subspace-prediction error method for identification of nonlinear vibrating structures. Nonlinear Dyn. 91, 1605–1617 (2018)

    Article  MATH  Google Scholar 

  40. Reynders, E., Roeck, G.D.: Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis. Mech. Syst. Signal Process. 22, 617–637 (2008)

    Article  Google Scholar 

  41. Wang, W., Cao, J.Y., Bowen, C.R., Zhang, Y., Lin, J.: Nonlinear dynamics and performance enhancement of asymmetric potential bistable energy harvesters. Nonlinear Dyn. 94, 1183–1194 (2018)

    Article  Google Scholar 

  42. Zhou, Z., Qin, W., Zhu, P.: Harvesting performance of quad-stable piezoelectric energy harvester: modeling and experiment. Mech. Syst. Signal Process. 110, 260–272 (2018)

    Article  Google Scholar 

  43. Zhang, Y., Cao, J.Y., Wang, W., Liao, W.H.: Enhanced modeling of nonlinear restoring force in multi-stable energy harvesters. J. Sound. Vib. 494, 115890 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (Grant No. 51975453)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyi Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Cao, J., Hu, F. et al. Parameter identification of nonlinear bistable piezoelectric structures by two-stage subspace method. Nonlinear Dyn 105, 2157–2172 (2021). https://doi.org/10.1007/s11071-021-06738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06738-z

Keywords

Navigation