Skip to main content
Log in

An image encryption scheme based on an optimal chaotic map derived by multi-objective optimization using ABC algorithm

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel optimal chaotic map (OCM) is proposed for image encryption scheme (IES). The OCM is constructed using a multi-objective optimization strategy through artificial bee colony (ABC) algorithm. An empirical model for the OCM with four unknown variables is first constituted, and then, these variables are optimally found out using ABC for minimizing the multi-objective function composed of the information entropy and Lyapunov exponent (LE) of the OCM. The OCM shows better chaotic attributes in the evaluation analyses using metrics such as bifurcation, 3D phase space, LE, permutation entropy (PE) and sample entropy (SE). The encrypting performance of the OCM is demonstrated on a straightforward IES and verified by various cryptanalyses that compared with many reported studies, as well. The main superiority of the OCM over the studies based on optimization is that it does not require any optimization in the encrypting operation; thus, OCM works standalone in the encryption. However, those reported studies use ciphertext images obtained through encrypting process in every cycle of optimization algorithm, resulting in long processing time. Therefore, the IES with OCS is faster than the others optimization-based IES. Furthermore, the proposed IES with the OCM manifests satisfactory outcomes for the compared results with the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

The data made available with the article are used from public resources.

References

  1. Xuejing, K., Zihui, G.: A new color image encryption scheme based on DNA encoding and spatiotemporal chaotic system. Signal Process. Image Commun. 80, 1–11 (2020). https://doi.org/10.1016/j.image.2019.115670

    Article  Google Scholar 

  2. Alawida, M., Samsudin, A., Teh, J. Sen., Alkhawaldeh, R.S.: A new hybrid digital chaotic system with applications in image encryption. Signal Process. 160, 45–58 (2019). https://doi.org/10.1016/j.sigpro.2019.02.016

    Article  Google Scholar 

  3. Bao, L., Yi, S., Zhou, Y.: Combination of sharing matrix and image encryption for lossless (k, n)-secret image sharing. IEEE Trans. Image Process. 26, 5618–5631 (2017). https://doi.org/10.1109/TIP.2017.2738561

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhang, F., Kodituwakku, H.A.D.E., Hines, J.W., Coble, J.: Multilayer data-driven cyber-attack detection system for industrial control systems based on network, system, and process data. IEEE Trans. Ind. Inform. 15, 4362–4369 (2019). https://doi.org/10.1109/TII.2019.2891261

    Article  Google Scholar 

  5. Sambas, A., Vaidyanathan, S., Tlelo-Cuautle, E., Abd-El-Atty, B., El-Latif, A.A.A., Guillen-Fernandez, O., Hidayat, Y., Gundara, G.: A 3-D multi-stable system with a peanut-shaped equilibrium curve: circuit design, FPGA realization, and an application to ımage encryption. IEEE Access. 8, 137116–137132 (2020). https://doi.org/10.1109/ACCESS.2020.3011724

    Article  Google Scholar 

  6. Chen, J., Chen, L., Zhou, Y.: Cryptanalysis of a DNA-based image encryption scheme. Inf. Sci. (NY) 520, 130–141 (2020). https://doi.org/10.1016/j.ins.2020.02.024

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, Y., Qin, Z., Liao, X., Wu, J.: Cryptanalysis and enhancement of an image encryption scheme based on a 1-D coupled Sine map. Nonlinear Dyn. 100, 2917–2931 (2020). https://doi.org/10.1007/s11071-020-05654-y

    Article  Google Scholar 

  8. Vaidyanathan, S., Azar, A.T., Rajagopal, K., Sambas, A., Kacar, S., Cavusoglu, U.: A new hyperchaotic temperature fluctuations model, its circuit simulation, FPGA implementation and an application to image encryption. Int. J. Simul. Process Model. 13, 281–296 (2018). https://doi.org/10.1504/IJSPM.2018.093113

    Article  Google Scholar 

  9. Hua, Z., Zhu, Z., Yi, S., Zhang, Z., Huang, H.: Cross-plane colour image encryption using a two-dimensional logistic tent modular map. Inf. Sci. (NY) 546, 1063–1083 (2021). https://doi.org/10.1016/j.ins.2020.09.032

    Article  MathSciNet  Google Scholar 

  10. Talhaoui, M.Z., Wang, X.: A new fractional one dimensional chaotic map and its application in high-speed image encryption. Inf. Sci. (NY) (2020). https://doi.org/10.1016/j.ins.2020.10.048

    Article  Google Scholar 

  11. Wen, W., Wei, K., Zhang, Y., Fang, Y., Li, M.: Colour light field image encryption based on DNA sequences and chaotic systems. Nonlinear Dyn. 99, 1587–1600 (2020). https://doi.org/10.1007/s11071-019-05378-8

    Article  Google Scholar 

  12. Zheng, P., Huang, J.: Efficient encrypted images filtering and transform coding with Walsh–Hadamard transform and parallelization. IEEE Trans. Image Process. 27, 2541–2556 (2018). https://doi.org/10.1109/TIP.2018.2802199

    Article  MathSciNet  MATH  Google Scholar 

  13. Chai, X., Bi, J., Gan, Z., Liu, X., Zhang, Y., Chen, Y.: Color image compression and encryption scheme based on compressive sensing and double random encryption strategy. Signal Process. 176, 107684 (2020). https://doi.org/10.1016/j.sigpro.2020.107684

    Article  Google Scholar 

  14. Asgari-Chenaghlu, M., Balafar, M.A., Feizi-Derakhshi, M.R.: A novel image encryption algorithm based on polynomial combination of chaotic maps and dynamic function generation. Signal Process. 157, 1–13 (2019). https://doi.org/10.1016/j.sigpro.2018.11.010

    Article  Google Scholar 

  15. Saravanan, S., Sivabalakrishnan, M.: A hybrid chaotic map with coefficient improved whale optimization-based parameter tuning for enhanced image encryption. Soft Comput. 48, 1–24 (2021). https://doi.org/10.1007/s00500-020-05528-w

    Article  Google Scholar 

  16. Wang, X., Li, Y.: Chaotic image encryption algorithm based on hybrid multi-objective particle swarm optimization and DNA sequence. Opt. Lasers Eng. 137, 106393 (2021). https://doi.org/10.1016/j.optlaseng.2020.106393

    Article  Google Scholar 

  17. Ahmad, M., Alam, M.Z., Umayya, Z., Khan, S., Ahmad, F.: An image encryption approach using particle swarm optimization and chaotic map. Int. J. Inf. Technol. 10, 247–255 (2018). https://doi.org/10.1007/s41870-018-0099-y

    Article  Google Scholar 

  18. Wang, H., Xiao, D., Chen, X., Huang, H.: Cryptanalysis and enhancements of image encryption using combination of the 1D chaotic map. Signal Process. 144, 444–452 (2018). https://doi.org/10.1016/j.sigpro.2017.11.005

    Article  Google Scholar 

  19. Chai, X., Gan, Z., Yuan, K., Chen, Y., Liu, X.: A novel image encryption scheme based on DNA sequence operations and chaotic systems. Neural Comput. Appl. 31, 219–237 (2019). https://doi.org/10.1007/s00521-017-2993-9

    Article  Google Scholar 

  20. Wu, J., Liao, X., Yang, B.: Image encryption using 2D Hénon-Sine map and DNA approach. Signal Process. 153, 11–23 (2018). https://doi.org/10.1016/j.sigpro.2018.06.008

    Article  Google Scholar 

  21. Chen, C., Sun, K., He, S.: An improved image encryption algorithm with finite computing precision. Signal Process. 168, 1–10 (2020). https://doi.org/10.1016/j.sigpro.2019.107340

    Article  Google Scholar 

  22. Mansouri, A., Wang, X.: A novel one-dimensional sine powered chaotic map and its application in a new image encryption scheme. Inf. Sci. (NY) 520, 46–62 (2020). https://doi.org/10.1016/j.ins.2020.02.008

    Article  MathSciNet  MATH  Google Scholar 

  23. Hua, Z., Zhou, Y., Huang, H.: Cosine-transform-based chaotic system for image encryption. Inf. Sci. (NY) 480, 403–419 (2019). https://doi.org/10.1016/j.ins.2018.12.048

    Article  Google Scholar 

  24. Yang, Y., Wang, L., Duan, S., Luo, L.: Dynamical analysis and image encryption application of a novel memristive hyperchaotic system. Opt. Laser Technol. 133, 106553 (2021). https://doi.org/10.1016/j.optlastec.2020.106553

    Article  Google Scholar 

  25. Su, Y., Tang, C., Chen, X., Li, B., Xu, W., Lei, Z.: Cascaded Fresnel holographic image encryption scheme based on a constrained optimization algorithm and Henon map. Opt. Lasers Eng. 88, 20–27 (2017). https://doi.org/10.1016/j.optlaseng.2016.07.012

    Article  Google Scholar 

  26. Farah, M.A.B., Guesmi, R., Kachouri, A., Samet, M.: A novel chaos based optical image encryption using fractional Fourier transform and DNA sequence operation. Opt. Laser Technol. 121, 105777 (2020). https://doi.org/10.1016/j.optlastec.2019.105777

    Article  MATH  Google Scholar 

  27. Kaur, M., Singh, D., Uppal, R.S.: Parallel strength Pareto evolutionary algorithm-II based image encryption. IET Image Process. 14, 1015–1026 (2020). https://doi.org/10.1049/iet-ipr.2019.0587

    Article  Google Scholar 

  28. Asgari-Chenaghlu, M., Feizi-Derakhshi, M.R., Nikzad-Khasmakhi, N., Feizi-Derakhshi, A.R., Ramezani, M., Jahanbakhsh-Nagadeh, Z., Rahkar-Farshi, T., Zafarani-Moattar, E., Ranjbar-Khadivi, M., Balafar, M.A.: Cy: chaotic yolo for user intended image encryption and sharing in social media. Inf. Sci. (NY) 542, 212–227 (2021). https://doi.org/10.1016/j.ins.2020.07.007

    Article  Google Scholar 

  29. Enayatifar, R., Guimarães, F.G., Siarry, P.: Index-based permutation-diffusion in multiple-image encryption using DNA sequence. Opt. Lasers Eng. 115, 131–140 (2019). https://doi.org/10.1016/j.optlaseng.2018.11.017

    Article  Google Scholar 

  30. Hanis, S., Amutha, R.: A fast double-keyed authenticated image encryption scheme using an improved chaotic map and a butterfly-like structure. Nonlinear Dyn. 95, 421–432 (2019). https://doi.org/10.1007/s11071-018-4573-7

    Article  Google Scholar 

  31. Lan, R., He, J., Wang, S., Gu, T., Luo, X.: Integrated chaotic systems for image encryption. Signal Process. 147, 133–145 (2018). https://doi.org/10.1016/j.sigpro.2018.01.026

    Article  Google Scholar 

  32. Carbas, S., Toktas, A., Ustun, D. (eds.): Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications. Springer, Singapore (2021)

    Google Scholar 

  33. Dua, M., Wesanekar, A., Gupta, V., Bhola, M., Dua, S.: Differential evolution optimization of intertwining logistic map-DNA based image encryption technique. J. Ambient Intell. Humaniz. Comput. 11, 3771–3786 (2020). https://doi.org/10.1007/s12652-019-01580-z

    Article  Google Scholar 

  34. Sreelaja, N.K., Vijayalakshmi Pai, G.A.: Stream cipher for binary image encryption using ant colony optimization based key generation. Appl. Soft Comput. J. 12, 2879–2895 (2012). https://doi.org/10.1016/j.asoc.2012.04.002

    Article  Google Scholar 

  35. Sajasi, S., Eftekhari Moghadam, A.M.: An adaptive image steganographic scheme based on noise visibility function and an optimal chaotic based encryption method. Appl. Soft Comput. J. 30, 375–389 (2015). https://doi.org/10.1016/j.asoc.2015.01.032

    Article  Google Scholar 

  36. Suri, S., Vijay, R.: A Pareto-optimal evolutionary approach of image encryption using coupled map lattice and DNA. Neural Comput. Appl. 32, 11859–11873 (2020). https://doi.org/10.1007/s00521-019-04668-x

    Article  Google Scholar 

  37. Kaur, M., Singh, D.: Multiobjective evolutionary optimization techniques based hyperchaotic map and their applications in image encryption. Multidimens. Syst. Signal Process. 32, 281–301 (2020). https://doi.org/10.1007/s11045-020-00739-8

    Article  MATH  Google Scholar 

  38. Kaur, M., Kumar, V., Li, L.: Color image encryption approach based on memetic differential evolution. Neural Comput. Appl. 31, 7975–7987 (2019). https://doi.org/10.1007/s00521-018-3642-7

    Article  Google Scholar 

  39. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007). https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  40. Toktas, A., Ustun, D.: Triple-objective optimization scheme using butterfly-integrated ABC algorithm for design of multilayer RAM. IEEE Trans. Antennas Propag. 68, 5603–5612 (2020). https://doi.org/10.1109/TAP.2020.2981728

    Article  Google Scholar 

  41. Toktas, A., Ustun, D., Tekbas, M.: Global optimisation scheme based on triple-objective ABC algorithm for designing fully optimised multi-layer radar absorbing material. IET Microw. Antennas Propag. 14, 800–811 (2020). https://doi.org/10.1049/iet-map.2019.0868

    Article  Google Scholar 

  42. Toktas, A., Ustun, D., Erdogan, N.: Pioneer Pareto artificial bee colony algorithm for three-dimensional objective space optimization of composite-based layered radar absorber. Appl. Soft Comput. 96, 1–12 (2020). https://doi.org/10.1016/j.asoc.2020.106696

    Article  Google Scholar 

  43. Akdagli, A., Toktas, A.: A novel expression in calculating resonant frequency of H-shaped compact microstrip antennas obtained by using artificial bee colony algorithm. J. Electromagn. Waves Appl. 24, 2049–2061 (2010). https://doi.org/10.1163/156939310793675989

    Article  Google Scholar 

  44. Toktas, A.: Multi-objective design of multilayer microwave dielectric filters using artificial bee colony algorithm. In: Carbas, S., Toktas, A., Ustun, D. (eds.) Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications. Springer, Singapore (2021)

    Google Scholar 

  45. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976). https://doi.org/10.1038/261459a0

    Article  MATH  Google Scholar 

  46. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 4 (2002). https://doi.org/10.1103/PhysRevLett.88.174102

    Article  Google Scholar 

  47. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for random and pseudorandom number generators for cryptographic applications Lawrence E Bassham III Special Publication 800-22 Revision 1a

  48. Yang, F., Mou, J., Liu, J., Ma, C., Yan, H.: Characteristic analysis of the fractional-order hyperchaotic complex system and its image encryption application. Signal Process. 169, 1–16 (2020). https://doi.org/10.1016/j.sigpro.2019.107373

    Article  Google Scholar 

  49. Wu, Y., Zhang, L., Qian, T., Liu, X., Xie, Q.: Content-adaptive image encryption with partial unwinding decomposition. Signal Process. 181, 107911 (2021). https://doi.org/10.1016/j.sigpro.2020.107911

    Article  Google Scholar 

  50. Luo, Y., Lin, J., Liu, J., Wei, D., Cao, L., Zhou, R., Cao, Y., Ding, X.: A robust image encryption algorithm based on Chua’s circuit and compressive sensing. Signal Process. 161, 227–247 (2019). https://doi.org/10.1016/j.sigpro.2019.03.022

    Article  Google Scholar 

  51. Chai, X., Zheng, X., Gan, Z., Han, D., Chen, Y.: An image encryption algorithm based on chaotic system and compressive sensing. Signal Process. 148, 124–144 (2018). https://doi.org/10.1016/j.sigpro.2018.02.007

    Article  Google Scholar 

  52. Wang, X., Gao, S.: Image encryption algorithm based on the matrix semi-tensor product with a compound secret key produced by a Boolean network. Inf. Sci. (NY) 539, 195–214 (2020). https://doi.org/10.1016/j.ins.2020.06.030

    Article  MathSciNet  Google Scholar 

  53. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16, 2129–2151 (2006). https://doi.org/10.1142/S0218127406015970

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, X., Zhao, Z., Wang, J.: Chaotic image encryption based on circular substitution box and key stream buffer. Signal Process. Image Commun. 29, 902–913 (2014). https://doi.org/10.1016/j.image.2014.06.012

    Article  Google Scholar 

  55. Wu, Y., Noonan, J.P., Agaian, S.: NPCR and UACI randomness tests for ımage encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. 1, 31–38 (2011)

    Google Scholar 

  56. Enginoğlu, S., Erkan, U., Memiş, S.: Pixel similarity-based adaptive Riesz mean filter for salt-and-pepper noise removal. Multimed. Tools Appl. (2019). https://doi.org/10.1007/s11042-019-08110-1

    Article  Google Scholar 

  57. Chai, X., Fu, X., Gan, Z., Lu, Y., Chen, Y.: A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process. 155, 44–62 (2019). https://doi.org/10.1016/j.sigpro.2018.09.029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdurrahim Toktas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toktas, A., Erkan, U. & Ustun, D. An image encryption scheme based on an optimal chaotic map derived by multi-objective optimization using ABC algorithm. Nonlinear Dyn 105, 1885–1909 (2021). https://doi.org/10.1007/s11071-021-06675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06675-x

Keywords

Navigation