Skip to main content
Log in

Enhanced FPGA realization of the fractional-order derivative and application to a variable-order chaotic system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The efficiency of the hardware implementations of fractional-order systems heavily relies on the efficiency of realizing the fractional-order derivative operator. In this work, a generic hardware implementation of the fractional-order derivative based on the Grünwald–Letnikov’s approximation is proposed and verified on a field-programmable gate array. The main advantage of this particular realization is its flexibility in applications which enable easy real-time configuration of the values of the fractional orders, step sizes, and/or other system parameters without changing the hardware architecture. Different approximation techniques are used to improve the hardware performance including piece-wise linear/quadratic methods. As an application, a variable-order chaotic oscillator is implemented and verified using fractional orders that vary in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)

    Article  MathSciNet  Google Scholar 

  2. Assadi, I., Charef, A., Bensouici, T., Belgacem, N.: Arrhythmias discrimination based on fractional order system and KNN classifier. In: IET Conference Proceedings, pp. 6–6 (2015)

  3. Barakat, M.L.: Generalized hardware post-processing technique for chaos-based pseudorandom number generators. ETRI J. 35(3), 448–458 (2013)

    Article  Google Scholar 

  4. Bayasi, N., Tekeste, T., Saleh, H., Mohammad, B., Khandoker, A., Ismail, M.: Low-power ECG-based processor for predicting ventricular arrhythmia. IEEE Trans. Very Large Scale Integr. VLSI Syst. 24(5), 1962–1974 (2015)

    Article  Google Scholar 

  5. Bhrawy, A., Zaky, M.: Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations. Comput. Math. Appl. 73(6), 1100–1117 (2017)

    Article  MathSciNet  Google Scholar 

  6. Caponetto, R., Dongola, G., Maione, G., Pisano, A.: Integrated technology fractional order proportional-integral-derivative design. J. Vib. Control 20(7), 1066–1075 (2014)

    Article  MathSciNet  Google Scholar 

  7. Clemente-López, D., Muñoz-Pacheco, J., Félix-Beltrán, O., Volos, C.: Efficient computation of the Grünwald–Letnikov method for ARM-based implementations of fractional-order chaotic systems. In: 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1–4. IEEE (2019)

  8. Ferdi, Y.: Computation of fractional order derivative and integral via power series expansion and signal modelling. Nonlinear Dyn. 46(1), 1–15 (2006)

    Article  MathSciNet  Google Scholar 

  9. Hartley, T.T., Lorenzo, C.F.: Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29(1–4), 201–233 (2002)

    Article  MathSciNet  Google Scholar 

  10. Howard, R.M.: Principles of Random Signal Analysis and Low Noise Design. Wiley, Hoboken (2002)

    Book  Google Scholar 

  11. Hsiao, S.F., Ko, H.J., Tseng, Y.L., Huang, W.L., Lin, S.H., Wen, C.S.: Design of hardware function evaluators using low-overhead nonuniform segmentation with address remapping. IEEE Trans. Very Large Scale Integr. VLSI Syst. 21(5), 875–886 (2012)

    Article  Google Scholar 

  12. Huang, X., Zhang, B., Qin, H., An, W.: Closed-form design of variable fractional-delay fir filters with low or middle cutoff frequencies. IEEE Trans. Circuits Syst. I Regul. Pap. 65(2), 628–637 (2018)

    Google Scholar 

  13. Jiang, C., Adams, J., Carletta, J., Hartley, T.: Hardware implementation of fractional-order systems as infinite impulse response filters. IFAC Proc. 39(11), 408–413 (2006)

    Article  Google Scholar 

  14. Jiang, C.X., Carletta, J.E., Hartley, T.T.: Implementation of fractional-order operators on field programmable gate arrays. In: Advances in Fractional Calculus, pp. 333–346. Springer, Netherlands (2007)

  15. Jiang, C.X., Carletta, J.E., Hartley, T.T., Veillette, R.J.: A systematic approach for implementing fractional-order operators and systems. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 301–312 (2013)

    Article  Google Scholar 

  16. Munoz-Pacheco, J., Zambrano-Serrano, E., Volos, C., Tacha, O., Stouboulos, I., Pham, V.T.: A fractional order chaotic system with a 3d grid of variable attractors. Chaos Solitons Fractals 113, 69–78 (2018)

    Article  MathSciNet  Google Scholar 

  17. Pano-Azucena, A.D., Tlelo-Cuautle, E., Muñoz-Pacheco, J.M., de la Fraga, L.G.: FPGA-based implementation of different families of fractional-order chaotic oscillators applying Grünwald–Letnikov method. Commun. Nonlinear Sci. Numer. Simul. 72, 516–527 (2019)

    Article  MathSciNet  Google Scholar 

  18. Petráš, I.: Method for simulation of the fractional order chaotic systems. Acta Montan. Slovaca 11(4), 273–277 (2006)

    Google Scholar 

  19. Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, London (2011)

    Book  Google Scholar 

  20. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  21. Rajagopal, K., Akgul, A., Jafari, S., Aricioglu, B.: A chaotic memcapacitor oscillator with two unstable equilibriums and its fractional form with engineering applications. Nonlinear Dyn. 91(2), 957–974 (2018)

    Article  Google Scholar 

  22. Rajagopal, K., Karthikeyan, A., Srinivasan, A.: Dynamical analysis and FPGA implementation of a chaotic oscillator with fractional-order memristor components. Nonlinear Dyn. 91(3), 1491–1512 (2018)

    Article  Google Scholar 

  23. Rajagopal, K., Karthikeyan, A., Srinivasan, A.K.: FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dyn. 87(4), 2281–2304 (2017)

    Article  Google Scholar 

  24. Rana, K., Kumar, V., Mittra, N., Pramanik, N.: Implementation of fractional order integrator/differentiator on field programmable gate array. Alex. Eng. J. 55(2), 1765–1773 (2016)

    Article  Google Scholar 

  25. Sabzalian, M.H., Mohammadzadeh, A., Lin, S., et al.: Robust fuzzy control for fractional-order systems with estimated fraction-order. Nonlinear Dyn. 98, 2375–2385 (2019)

    Article  Google Scholar 

  26. Sayed, W.S., Tolba, M.F., Radwan, A.G., Abd-El-Hafiz, S.K.: FPGA realization of a speech encryption system based on a generalized modified chaotic transition map and bit permutation. Multimed. Tools Appl. 78(12), 16097–16127 (2019)

    Article  Google Scholar 

  27. Tavakoli-Kakhki, M.: Implementation of fractional-order transfer functions in the viewpoint of the required fractional-order capacitors. Int. J. Syst. Sci. 48(1), 63–73 (2017)

    Article  MathSciNet  Google Scholar 

  28. Tekeste, T., Bayasi, N., Saleh, H., Khandoker, A., Mohammad, B., Al-Qutayri, M., Ismail, M.: Adaptive ECG interval extraction. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 998–1001. IEEE (2015)

  29. Tolba, M.F., et al.: FPGA implementation of two fractional order chaotic systems. AEU Int. J. Electron. Commun. 78, 162–172 (2017)

    Article  Google Scholar 

  30. Tolba, M.F., et al.: FPGA realization of caputo and Grünwald–Letnikov operators. In: 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1–4. IEEE (2017)

  31. Tolba, M.F., et al.: Fractional order integrator/differentiator: FPGA implementation and fopid controller application. AEU Int. J. Electron. Commun. 98, 220–229 (2019)

    Article  Google Scholar 

  32. Tolba, M.F., Said, L.A., Madian, A.H., Radwan, A.G.: FPGA implementation of fractional-order integrator and differentiator based on Grünwald–Letnikov definition. In: 29th International Conference on Microelectronics (ICM), pp. 1–4 (2017). https://doi.org/10.1109/ICM.2017.8268872

  33. Tolba, M.F., Said, L.A., Madian, A.H., Radwan, A.G.: FPGA implementation of the fractional order integrator/differentiator: two approaches and applications. IEEE Trans. Circuits Syst. I Regul. Pap. 66(4), 1484–1495 (2018)

    Article  MathSciNet  Google Scholar 

  34. Yasin, M., Tekeste, T., Saleh, H., Mohammad, B., Sinanoglu, O., Ismail, M.: Ultra-low power, secure iot platform for predicting cardiovascular diseases. IEEE Trans. Circuits Syst. I Regul. Pap. 64(9), 2624–2637 (2017)

    Article  Google Scholar 

  35. Zambrano-Serrano, E., Munoz-Pacheco, J., Campos-Cantón, E.: Chaos generation in fractional-order switched systems and its digital implementation. AEU Int. J. Electron. Commun. 79, 43–52 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the System-On-Chip center at the Khalifa University of Science and Technology under Award No. (RC2-2018-020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baker Mohammad.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolba, M.F., Saleh, H., Mohammad, B. et al. Enhanced FPGA realization of the fractional-order derivative and application to a variable-order chaotic system. Nonlinear Dyn 99, 3143–3154 (2020). https://doi.org/10.1007/s11071-019-05449-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05449-w

Keywords

Navigation