Skip to main content
Log in

Taxicab geometry in table of higher-order elements

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper deals with the analysis of the order of the differential equation of motion describing the dynamics of a one-port network compounded of series or parallel connections of arbitrary elements from Chua’s table. It takes advantage of the fact that the elements in the table are arranged in a square graticule, which conforms to the so-called taxicab geometry. The order of the equation of motion is then expressed via the so-called Manhattan metric, which is applied to measuring the distance between individual elements in the table. It is demonstrated that the order can be taken as the radius of the so-called quarter-circle. The quarter-circle is a geometric figure in Chua’s table, circumscribed around an imaginary central point where the so-called hidden element of the one-port network is located.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

No data were used to support this study.

Notes

  1. Disk (also denoted as disc) [52] is the region in a plane bounded by a circle. A disk is said to be closed if it contains the circle that constitutes its boundary.

References

  1. Coddington, E.A., Levinson, N.: The Poincaré–Bendixson Theory of Two-Dimensional Autonomous Systems. Theory of Ordinary Differential Equations, pp. 389–403. McGraw-Hill, New York (1955)

    Google Scholar 

  2. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MATH  Google Scholar 

  3. Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abrams, D.M., Strogatz, H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93(17), 174102-1-4 (2004)

    Article  Google Scholar 

  6. Johnson, N.F.: Simply Complexity: A Clear Guide to Complexity Theory. Oneworld Publications, London (2009)

    Google Scholar 

  7. McCabe, T.J., Butler, C.W.: Design complexity measurement and testing. Commun. ACM 32(12), 1415–1423 (1989)

    Article  Google Scholar 

  8. Navlakha, J.K.: A survey of systems complexity metrics. Comput. J. 30(3), 233–238 (1987)

    Article  Google Scholar 

  9. Rhodes, J.L.: Applications of Automata Theory and Algebra. World Scientific, Singapore (2010)

    Google Scholar 

  10. Kolmogorov, A.: On tables of random numbers. Sankhyā Indian J. Stat. Ser. A 25(4), 369–376 (1963)

    MathSciNet  MATH  Google Scholar 

  11. Mezić, I., Fonoberov, V.A., Fonoberova, M., Sahai, T.: Spectral complexity of directed graphs and application to structural decomposition. Complexity 9610826, 18p (2019)

    MATH  Google Scholar 

  12. Gutman, I., Soldatović, T., Vidović, D.: The energy of a graph and its size dependence. A Monte Carlo approach. Chem. Phys. Lett 297(5–6), 428–432 (1998)

    Article  Google Scholar 

  13. Stanowski, M.: Abstract complexity definition. Complicity 8(2), 78–83 (2011)

    Article  Google Scholar 

  14. Mezić, I., Banaszuk, A.: Comparison of systems with complex behavior. Physica D 197(1–2), 101–133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guillemin, E.A.: Synthesis of Passive Networks, vol. 5. Wiley, New York (1957)

    Google Scholar 

  16. Bers, A.: The degrees of freedom in RLC networks. IRE Trans. Circuit Theory 6(1), 91–95 (1959)

    Article  Google Scholar 

  17. Bryant, P.R.: The order of complexity of electrical networks. The Institution of Electrical Engineers, Monograph No. 335 E, pp. 174–188 (1959)

    Google Scholar 

  18. Bryant, P.R.: Problems in Electrical Network Theory. Ph.D. dissertation, Cambridge University (1959)

  19. Milić, M.M.: General passive networks-solvability, degeneracies, and order of complexity. IEEE Trans. Circuits Syst. CAS–21(2), 177–183 (1974)

    Article  MathSciNet  Google Scholar 

  20. Purslow, E.J., Spence, R.: Order of complexity of active networks. Proc. IEE 114(2), 195–198 (1967)

    MathSciNet  Google Scholar 

  21. Tow, J.: Order of complexity of linear active networks. Proc. IEE 115(9), 1259–1262 (1968)

    Google Scholar 

  22. Emre, E., Hüseyin, Ö.: On the order of complexity of active RLC networks. IEEE Trans. Circuit Theory 20(5), 615 (1973)

    Article  Google Scholar 

  23. Ozawa, T.: Order of complexity of linear active networks and a common tree in the 2-graph method. Electron. Lett. 8(22), 542–543 (1972)

    Article  MathSciNet  Google Scholar 

  24. Svoboda, J.A.: The order of complexity of RLC-nullor networks. Circuits Syst. Signal Process. 2(1), 89–98 (1983)

    Article  MATH  Google Scholar 

  25. Chua, L.O.: Introduction to Nonlinear Network Theory. McGraw-Hill, New York (1969)

    Google Scholar 

  26. Matsumoto, T., Chua, L.O., Makono, A.: On the implications of capacitor-only cutsets and inductor-only loops in nonlinear networks. IEEE Trans. Circuits Syst. CAS–26(10), 828–845 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bryant, P.R., Bers, A.: The degrees of freedom in RLC networks. IRE Trans. Circuit Theory CT–7, 173–174 (1960)

    Article  Google Scholar 

  28. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory CT–18(5), 507–519 (1971)

    Article  Google Scholar 

  29. Bao, B.C., Liu, Z., Leung, H.: Is memristor a dynamic element? Electron. Lett. 49(24), 1523–1525 (2013)

    Article  Google Scholar 

  30. Riaza, R.: Comment: Is memristor a dynamic element? Electron. Lett. 50(19), 1342–1343 (2014)

    Article  Google Scholar 

  31. Bao, B.C.: Reply: Comment on ‘Is memristor a dynamic element?’. Electron. Lett. 50(19), 1344–1345 (2014)

    Article  Google Scholar 

  32. Muthuswamy, B., Banerjee, S.: Introduction to Nonlinear Circuits and Networks. Springer, New York (2019)

    Book  Google Scholar 

  33. Chua, L.O.: Device modeling via basic nonlinear circuit elements. IEEE Trans. Circuits Syst. CAS–27(11), 1014–1044 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chua, L.O.: How we predicted the memristor. Nat. Electron. 1, 322 (2018)

    Article  Google Scholar 

  35. Itoh, M., Chua, L.: Chaotic oscillation via edge of chaos criteria. Int. J. Bifurc. Chaos 27(11), 1730035–79 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bao, B., Ma, Z.: A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos 21(9), 2629–2645 (2011)

    Article  MATH  Google Scholar 

  37. Bao, H., Jiang, T., Chu, K., Chen, M., Xu, Q., Bao, B.: Memristor-based canonical Chua’s circuit: extreme multistability in voltage-current domain and its controllability in flux-charge domain. Complexity 5935637, 13p (2018)

    MATH  Google Scholar 

  38. Kengne, J., Tabekoueng, Z.N., Tamba, V.K., Negou, A.N.: Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit. Chaos 25, 103126-1-10 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, C., Zang, S., Wang, X., Yuan, F., Tu, H.H.C.: Memcapacitor model and its application in chaotic oscillator with memristor. Chaos 27, 103110-1-12 (2017)

    MATH  Google Scholar 

  40. Yuan, F., Wang, C., Wang, X.: Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis. Chaos 27, 033103-1-15 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Rajagopal, K., Jafari, S., Karthikeyan, A., Srinivasan, A., Ayele, B.: Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors. Circuits Syst. Signal Process. 37(9), 3702–3724 (2018)

    Article  MathSciNet  Google Scholar 

  42. Yuan, F., Li, Y., Wang, G., Dou, G., Chen, G.: Complex dynamics in a memcapacitor-based circuit. Entropy 21, 188–14p (2019)

    Article  MathSciNet  Google Scholar 

  43. Wang, G., Shi, C., Wang, X., Yuan, F.: Coexisting oscillation and extreme multistability for a memcapacitor-based circuit. Math. Probl. Eng. 6504969, 13p (2017)

    MathSciNet  Google Scholar 

  44. Biolek, D., Biolek, Z., Biolková, V.: Memristors and other higher-order elements in generalized through-across domain. In: Proceedings of the 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo, pp. 604–607 (2016)

  45. Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Autom. Control 47(10), 1648–1662 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Biolek, D., Biolek, Z., Biolkova, V., Kolka, Z.: Nonlinear inerter in the light of Chua’s table of higher-order electrical elements. Proc. APCCAS 2016, 617–620 (2016)

    Google Scholar 

  47. Zhang, X.-I., Gao, Q., Nie, J.: The mem-inerter: a new mechanical element with memory. Adv. Mech. Eng. 10(6), 1–13 (2018)

    Article  Google Scholar 

  48. Wang, F.Z.: A triangular periodic table of elementary circuit elements. IEEE Trans. Circuits Syst. I 60(3), 616–623 (2013)

    Article  MathSciNet  Google Scholar 

  49. Chua, L.O.: The fourth element. Proc. IEEE 100(6), 1920–1927 (2012)

    Article  Google Scholar 

  50. Krause, E.F.: Taxicab Geometry: An Adventure in Non-Euclidean Geometry, p. 96. Dover Books on Mathematics, New York (1986)

    Google Scholar 

  51. Itoh, M., Chua, L.O.: Parasitic effects on memristor dynamics. Int. J. Bifurc. Chaos 26(6), 1630014 (2016)

    Article  MATH  Google Scholar 

  52. Clapham, C., Nicholson, J.: The Concise Oxford Dictionary of Mathematics, p. 138. Oxford University Press, Oxford (2014)

    MATH  Google Scholar 

  53. Biolek, Z., Biolek, D.: Euler–Lagrange equations of networks with higher-order elements. Radioengineering 26(2), 397–405 (2017)

    Article  MATH  Google Scholar 

  54. Biolek, D., Biolek, Z., Biolková, V.: Duality of complex systems built from higher-order elements. Complexity, 2018, Article ID 5719397 (2018)

  55. Chua, L.O., Alexander, G.R.: The effects of parasitic reactances on nonlinear networks. IEEE Trans. Circuit Theory CT–18(5), 520–532 (1971)

    Article  MathSciNet  Google Scholar 

  56. Biolek, D., Biolek, Z.: Predictive models of nanodevices. IEEE Trans. Nanotechnol. 17(5), 906–913 (2018)

    Article  MATH  Google Scholar 

  57. Biolek, D., Biolek, Z., Biolková, V., Kolka, Z.: Synthesis of predictive models of nonlinear devices: the intuitive approach. In: Proceedings of ANNA 2018, Varna, Bulgaria, pp. 23–28 (2018)

  58. Plesset, M.S.: The dynamics of cavitation bubbles. J. Appl. Mech. 16, 277–282 (1949)

    Google Scholar 

  59. Franc, J.-P., Michel, J.-M.: Fundamentals of Cavitation. Kluwer Academic Publishers, Berlin (2005)

    MATH  Google Scholar 

  60. Bruton, L.T.: Frequency sensitivity using positive impedance converter-type networks. Proc. IEEE 56(8), 1378–1379 (1968)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Czech Science Foundation under Grant No. 18-21608S. For research, the infrastructure of K217 Department, UD Brno, was also used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalibor Biolek.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biolek, Z., Biolek, D., Biolková, V. et al. Taxicab geometry in table of higher-order elements. Nonlinear Dyn 98, 623–636 (2019). https://doi.org/10.1007/s11071-019-05218-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05218-9

Keywords

Navigation