Skip to main content
Log in

Delays in perception and action for improving walk–run transition stability in bipedal gait

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on a transition motion between bipedal walking and running, whose characteristics have been revealed through numerous biological experiments. Although hysteresis in walk-to-run and run-to-walk transitions, the amount of which is proportional to the magnitude of acceleration/deceleration, is observed, it has not been elucidated yet. This is due to difficulty to conduct any biological experiments without the hysteresis in locomotion. From the viewpoint of nonlinear dynamics, the hysteresis is caused by dependency of the state history. Delays in perception and action for the walk–run transition can be assumed as the cause of the hysteresis. This paper therefore investigates i) whether the delays really cause the hysteresis in the walk–run transition, and ii) how they contribute to locomotion performance. To this end, in numerical simulations, we employ a controller for bipedal gait, named unified bipedal gait (UBG), which has capabilities of walking, running, and transitions between them like bipeds do. UBG is first optimized in pursue of biologically plausible controller with the same characteristics about the transition motion for reliable investigation. This optimized UBG reveals that the delays in perception and action actually cause the hysteresis with linearity of its amount and the magnitude of acceleration/deceleration. In addition, the delays play the key role of a bridge between latent representations of walking and running, thereby improving the success rate of the transition by nearly 40% from the case without the delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbott, L.F.: Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res. Bull. 50(5–6), 303–304 (1999)

    Article  Google Scholar 

  2. Abdolvahab, M.: Gait transition dynamics are modulated by concurrent cognitive activity. Attent. Percept. Psychophys. 77(7), 2502–2506 (2015)

    Article  Google Scholar 

  3. Abdolvahab, M.: A synergetic model for human gait transitions. Phys. A Statist. Mech. Appl. 433, 74–83 (2015)

    Article  Google Scholar 

  4. Abdolvahab, M., Carello, C.: Functional distance in human gait transition. Acta Psychol. 161, 170–176 (2015)

    Article  Google Scholar 

  5. Ahlborn, B.K., Blake, R.W.: Walking and running at resonance. Zoology 105(2), 165–174 (2002)

    Article  Google Scholar 

  6. Alexander, R.M.: Energy-saving mechanisms in walking and running. J. Exp. Biol. 160(1), 55–69 (1991)

    Google Scholar 

  7. Bertram, J.E., Gutmann, A.: Motions of the running horse and cheetah revisited: fundamental mechanics of the transverse and rotary gallop. J. R. Soc. Interface 6(35), 549–559 (2009)

    Article  Google Scholar 

  8. Blickhan, R., Full, R.: Similarity in multilegged locomotion: bouncing like a monopode. J. Comp. Physiol. A 173(5), 509–517 (1993)

    Article  Google Scholar 

  9. Cavanagh, P.R., Komi, P.V.: Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 42(3), 159–163 (1979)

    Article  Google Scholar 

  10. Daley, M.A., Channon, A.J., Nolan, G.S., Hall, J.: Preferred gait and walk-run transition speeds in ostriches measured using gps-imu sensors. J. Exp. Biol. 219(20), 3301–3308 (2016)

    Article  Google Scholar 

  11. Dawson, T.J., Taylor, C.R.: Energetic cost of locomotion in kangaroos. Nature 246(5431), 313–314 (1973)

    Article  Google Scholar 

  12. De Smet, K., Segers, V., Lenoir, M., De Clercq, D.: Spatiotemporal characteristics of spontaneous overground walk-to-run transition. Gait Posture 29(1), 54–58 (2009)

    Article  Google Scholar 

  13. Diedrich, F.J., Warren Jr., W.H.: Why change gaits? dynamics of the walk-run transition. J. Exp. Psychol. Hum. Percept. Perform. 21(1), 183 (1995)

    Article  Google Scholar 

  14. Fukuda, T., Hasegawa, Y., Sekiyama, K., Aoyama, T.: Multi-Locomotion Robotic Systems: New Concepts of Bio-inspired Robotics, vol. 81. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  15. Fukuoka, Y., Kimura, H.: Dynamic locomotion of a biomorphic quadruped ‘tekken’ robot using various gaits: walk, trot, free-gait and bound. Appl. Bionics Biomech. 6(1), 63–71 (2009)

    Article  Google Scholar 

  16. Full, R.J., Koditschek, D.E.: Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 202(23), 3325–3332 (1999)

    Google Scholar 

  17. Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The simplest walking model: stability, complexity, and scaling. ASME J. Biomech. Eng. 120(2), 281–288 (1998)

    Article  Google Scholar 

  18. Hreljac, A.: Effects of physical characteristics on the gait transition speed during human locomotion. Hum. Mov. Sci. 14(2), 205–216 (1995)

    Article  Google Scholar 

  19. Hreljac, A., Imamura, R., Escamilla, R.F., Edwards, W.B.: Effects of changing protocol, grade, and direction on the preferred gait transition speed during human locomotion. Gait Posture 25(3), 419–424 (2007)

    Article  Google Scholar 

  20. Hreljac, A., Imamura, R.T., Escamilla, R.F., Edwards, W.B.: When does a gait transition occur during human locomotion? J. Sports Sci. Med. 6(1), 36 (2007)

    Article  Google Scholar 

  21. Hubicki, C., Grimes, J., Jones, M., Renjewski, D., Spröwitz, A., Abate, A., Hurst, J.: Atrias: Design and validation of a tether-free 3d-capable spring-mass bipedal robot. Int. J. Robot. Res. 35(12), 1497–1521 (2016)

    Article  Google Scholar 

  22. Ijspeert, A.J.: Biorobotics: using robots to emulate and investigate agile locomotion. Science 346(6206), 196–203 (2014)

    Article  Google Scholar 

  23. Jaeger, H., Lukoševičius, M., Popovici, D., Siewert, U.: Optimization and applications of echo state networks with leaky-integrator neurons. Neural Netw. 20(3), 335–352 (2007)

    Article  MATH  Google Scholar 

  24. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Resolved momentum control: Humanoid motion planning based on the linear and angular momentum. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, vol. 2, pp. 1644–1650 (2003)

  25. Kimura, H., Fukuoka, Y., Cohen, A.H.: Biologically inspired adaptive walking of a quadruped robot. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 365(1850), 153–170 (2007)

    Article  Google Scholar 

  26. Kobayashi, T., Aoyama, T., Hasegawa, Y., Sekiyama, K., Fukuda, T.: Adaptive speed controller using swing leg motion for 3-d limit-cycle-based bipedal gait. Nonlinear Dyn. 84(4), 2285–2304 (2016)

    Article  MathSciNet  Google Scholar 

  27. Kobayashi, T., Hasegawa, Y., Sekiyama, K., Aoyama, T., Fukuda, T.: Unified bipedal gait for walking and running by dynamics-based virtual holonomic constraint in pdac. In: IEEE International Conference on Robotics and Automation, IEEE, pp. 1769–1775 (2016)

  28. Kobayashi, T., Sekiyama, K., Hasegawa, Y., Aoyama, T., Fukuda, T.: Quasi-passive dynamic autonomous control to enhance horizontal and turning gait speed control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp. 5612–5617 (2016)

  29. Kobayashi, T., Sekiyama, K., Hasegawa, Y., Aoyama, T., Fukuda, T.: Unified bipedal gait for autonomous transition between walking and running in pursuit of energy minimization. Robot. Auton. Syst. 103, 27–41 (2018)

    Article  Google Scholar 

  30. Kram, R., Domingo, A., Ferris, D.P.: Effect of reduced gravity on the preferred walk-run transition speed. J. Exp. Biol. 200(4), 821–826 (1997)

    Google Scholar 

  31. Li, L.: Stability landscapes of walking and running near gait transition speed. J. Appl. Biomech. 16(4), 428–435 (2000)

    Article  Google Scholar 

  32. Margaria, R., Cerretelli, P., Aghemo, P., Sassi, G.: Energy cost of running. J. Appl. Physiol. 18(2), 367–370 (1963)

    Article  Google Scholar 

  33. Martin, W.C., Wu, A., Geyer, H.: Experimental evaluation of deadbeat running on the atrias biped. IEEE Robot. Autom. Lett. 2(2), 1085–1092 (2017)

    Article  Google Scholar 

  34. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    Article  Google Scholar 

  35. Mohler, B.J., Thompson, W.B., Creem-Regehr, S.H., Pick, H.L., Warren, W.H.: Visual flow influences gait transition speed and preferred walking speed. Exp. Brain Res. 181(2), 221–228 (2007)

    Article  Google Scholar 

  36. Prilutsky, B.I., Gregor, R.J.: Swing-and support-related muscle actions differentially trigger human walk-run and run-walk transitions. J. Exp. Biol. 204(13), 2277–2287 (2001)

    Google Scholar 

  37. Ramezani, A., Chung, S.J., Hutchinson, S.: A biomimetic robotic platform to study flight specializations of bats. Sci. Robot. 2(3), eaal2505 (2017)

    Article  Google Scholar 

  38. Rubenson, J., Heliams, D.B., Lloyd, D.G., Fournier, P.A.: Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase. Proc. R. Soc. B Biol. Sci. 271(1543), 1091 (2004)

    Article  Google Scholar 

  39. Saito, F., Fukuda, T., Arai, F.: Swing and locomotion control for a two-link brachiation robot. IEEE Control Syst. 14(1), 5–12 (1994)

    Article  Google Scholar 

  40. Schöner, G., Jiang, W.Y., Kelso, J.S.: A synergetic theory of quadrupedal gaits and gait transitions. J. Theor. Biol. 142(3), 359–391 (1990)

  41. Sculley, D.: Web-scale k-means clustering. In: International Conference on World wide web, ACM, pp. 1177–1178 (2010)

  42. Segers, V., Aerts, P., Lenoir, M., De Clercq, D.: Spatiotemporal characteristics of the walk-to-run and run-to-walk transition when gradually changing speed. Gait Posture 24(2), 247–254 (2006)

  43. Segers, V., De Smet, K., Van Caekenberghe, I., Aerts, P., De Clercq, D.: Biomechanics of spontaneous overground walk-to-run transition. J. Exp. Biol. 216(16), 3047–3054 (2013)

    Article  Google Scholar 

  44. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems. Curran Associates, Inc., pp. 2951–2959 (2012). http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf

  45. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds for gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory 58(5), 3250–3265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Srinivasan, M., Ruina, A.: Computer optimization of a minimal biped model discovers walking and running. Nature 439(7072), 72 (2006)

    Article  Google Scholar 

  47. Swersky, K., Snoek, J., Adams, R.P.: Multi-task bayesian optimization. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26. Curran Associates, Inc., pp. 2004–2012 (2013). http://papers.nips.cc/paper/5086-multi-task-bayesian-optimization.pdf

  48. Thompson, P., Colebatch, J., Brown, P., Rothwell, J., Day, B., Obeso, J., Marsden, C.: Voluntary stimulus-sensitive jerks and jumps mimicking myoclonus or pathological startle syndromes. Mov. Disord. Off. J. Mov. Disord. Soc. 7(3), 257–262 (1992)

    Article  Google Scholar 

  49. Usherwood, J.R.: Inverted pendular running: a novel gait predicted by computer optimization is found between walk and run in birds. Biol. Lett. 6, rsbl20100256 (2010)

    Article  Google Scholar 

  50. Usherwood, J.R., Bertram, J.E.: Gait transition cost in humans. Eur. J. Appl. Physiol. 90(5–6), 647–650 (2003)

    Article  Google Scholar 

  51. Usherwood, J.R., Bertram, J.E.: Understanding brachiation: insight from a collisional perspective. J. Exp. Biol. 206(10), 1631–1642 (2003)

    Article  Google Scholar 

  52. Van Caekenberghe, I., De Smet, K., Segers, V., De Clercq, D.: Overground vs. treadmill walk-to-run transition. Gait Posture 31(4), 420–428 (2010)

    Article  Google Scholar 

  53. Van Der Maaten, L.: Accelerating t-sne using tree-based algorithms. J. Mach. Learn. Res. 15(1), 3221–3245 (2014)

    MathSciNet  MATH  Google Scholar 

  54. Xi, W., Yesilevskiy, Y., Remy, C.D.: Selecting gaits for economical locomotion of legged robots. Int. J. Robot. Res. 35(9), 1140–1154 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI, Grant-in-Aid for JSPS Fellows, Grant Number 16J05354. Additionally, this work was partially supported by JSPS KAKENHI, Grant-in-Aid for Young Scientists (B), Grant Number 17K14626.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taisuke Kobayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 14202 KB)

Appendices

Appendix

A Details of unified bipedal gait

Let us define the detailed equations of UBG (their perfect derivations are shown in the original papers [27, 29]). First, \(\ell (\theta )\) is given by solving Eq. (1) with regard to \(\theta \) as follows:

$$\begin{aligned} \ell (\psi (\theta )) =\,&\mathrm{e}^{-{{\hat{\zeta }}} {{\hat{\omega }}}_0 \psi } \left( A_1 \cos {{{\hat{\omega }}}_d \psi } + A_2 \sin {{{\hat{\omega }}}_d \psi } \right) \nonumber \\&+\, \frac{k}{{{\hat{k}}}} \ell _r - \frac{mg}{\sqrt{{{\hat{c}}}^2 + \left( {{\hat{k}}} - {{\hat{m}}} \right) ^2}} \cos (\theta (\psi ) \pm \alpha _g)\nonumber \\ \end{aligned}$$
(12)

where all the variables with hat, i.e., \({{\hat{m}}}\), \({{\hat{k}}}\), \({{\hat{c}}}\), \({{\hat{\zeta }}}\), \({{\hat{\omega }}}_0\), \({{\hat{\omega }}}_d\), are approximated as constants to solve Eq. (1) with regard to \(\theta \), although their physical meanings are similar to the original variables without hat. \(A_1\) and \(A_2\) are set according to the initial states of each gait step. \(\alpha _g\) is the phase difference equal to \(\tan ^{-1}\{{{\hat{c}}} / ({{\hat{k}}} - {{\hat{m}}})\}\). \(\psi (\theta )\) is an alternate variable of \(\theta \) for monotonically increasing property.

When giving \(\ell (\theta )\), \({{\dot{\theta }}} = F_1(\theta )\) and \(\dot{\phi }= F_2(\theta )\) are derived from their natural dynamics as the following equations, respectively.

$$\begin{aligned} F_1(\theta ) \!\!&\,=\,\!\!\, {\mp } \frac{ 1 }{ m \ell ^2(\theta ) } \sqrt{ 2 \left( \!\! -\frac{ C_\phi }{ \sin ^2{\theta } } \! + \! m^2 g \!\! \int \!\! \ell ^3(\theta ) \sin {\theta } \mathrm{d}\theta \! + \! C_\theta \!\! \right) } \nonumber \\ \!\!&\,=\,\!\! {\mp }\, \frac{ \sqrt{ 2 \left( - C(\theta ) + L(\theta ) + C_\theta \right) } }{ M(\theta ) } \end{aligned}$$
(13)
$$\begin{aligned} F_2(\theta ) \!\!&\,=\,\!\! \pm \, \frac{ \sqrt{ 2 C_\phi } }{ m \ell ^2(\theta ) \sin ^2{\theta } } = \pm \frac{ \sqrt{ 2 C(\theta ) } }{ M(\theta ) \sin {\theta } } \end{aligned}$$
(14)

where \(C_\theta \) and \(C_\phi \) are conserved quantities of integrals, which are fixed in each gait step. \(C_\phi /\sin ^2{\theta }\) is substituted for \(C(\theta )\), and the inertia term \(m \ell ^2(\theta )\) is also substituted for \(M(\theta )\). \(L(\theta ) = m^2 g \int \ell ^3(\theta ) \sin {\theta } \mathrm{d}\theta \) is solved approximately using Eq. (12). All the signs, ± and \({\mp }\), are given by the actual pendulum behavior: whether the pendulum is about to rise or going to fall. The autonomous systems are updated at the time of starting new gait step and generates the COM trajectory autonomously.

B Gait speed controllers

Gait speed control is required to investigate PTS. To this end, two types of controllers are implemented in our simulation model. We briefly introduce them in this section. To simplify the description, we omitted control methods for sideward and turning gait speeds from original papers, and several variable notations were changed according to this paper.

1.1 B.1 Adaptive speed controller

Let us briefly introduce the principle of the adaptive speed controller. To control the forward speed, the momentum of the swing leg (with mass \(m_{L}\)) is injected into D-SLIP model. If the swing leg swings over a touchdown position, its momentum would accelerate the gait speed forward; otherwise, the gait speed would be decelerated. The forward swing-up and touchdown positions, \(p_{Lx}^{su}\) and \(p_{Lx}^{td}\), are simply designed based on the capture point defined in Pratt et al.

$$\begin{aligned} p_{Lx}^{su} = ( \alpha _x + \iota _x ) \frac{F_r^{\mathrm {ref}}}{\omega } , p_{Lx}^{td} = \alpha _{x} \frac{F_r^{\mathrm {prd}}}{\omega } \end{aligned}$$
(15)

where \(F_r^{\mathrm {prd}}\) is the predictive gait speed at the end of a step. \(\alpha _x = 0.8\) is the constant to keep locomotion, \(\omega \) is the natural frequency of the inverted pendulum \(\omega =\sqrt{g/(\ell \cos \theta )}\), and \(\iota _x\) is the integral term accumulating the deviation of the reference and actual gait speeds to adapt the swing-up amount for the optimal momentum that yields \(F_r^{\mathrm {ref}}\).

1.2 B.2 Quasi-passive dynamic autonomous control

To enhance the performance of the gait speed control, we additionally employed quasi-passive autonomous control. This controller injects the additional angular momenta into \(C_\theta \) and \(C_\phi \) in Eqs. (13) and (14). The magnitude of \(C_\phi \) increases the forward speed. The magnitude of \(C_\theta \) is correlated to the time \(T_\mathrm {sup}\). Hence, two angular momenta, \(L_\phi \) and \(L_\theta \), are designed for the gait speed control and the gait step time stabilization, respectively.

$$\begin{aligned} L_\phi&= \left\{ \frac{1}{2} \left( \frac{2 G_\phi }{ 1 + \exp (- 2 G_\phi \varDelta F_r ) } - G_\phi \right) \right\} C_\phi \end{aligned}$$
(16)
$$\begin{aligned} L_\theta&= \left\{ \frac{2 G_\theta }{ 1 + \exp (- 2 G_\theta \varDelta T ) } - G_\theta \right\} C_\theta \end{aligned}$$
(17)

where \(\varDelta F_r\) and \(\varDelta T\) are deviations of the reference and actual gait speeds and the reference and actual gait step times, respectively. \(G_\phi = 0.2\) and \(G_\theta = 0.002\) are the maximal magnifications. By injecting \(L_\phi \) and \(L_\theta \) into the autonomous systems in Eqs. (13) and (14) as follows, locomotion will be changed toward that \(\varDelta F_r\) and \(\varDelta T\) are equal to 0.

$$\begin{aligned} C_\phi \Leftarrow C_\phi + L_\phi , \ C_\theta \Leftarrow C_\theta + L_\theta \end{aligned}$$
(18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, T., Aoyama, T., Sekiyama, K. et al. Delays in perception and action for improving walk–run transition stability in bipedal gait. Nonlinear Dyn 97, 1685–1698 (2019). https://doi.org/10.1007/s11071-019-05097-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05097-0

Keywords

Navigation