Skip to main content

Advertisement

Log in

Synchronization realization between two nonlinear circuits via an induction coil coupling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear chaotic circuits can be mapped into dimensionless dynamical systems by applying scale transformation. For synchronization control, linear voltage coupling via resistor has confirmed its effectiveness by applying negative feedback on the coupled circuits and nonlinear systems. In fact, resistor-based voltage coupling just bridges the electric devices of nonlinear circuits by imposing appropriate feedback current. Indeed, inductor (or induction coil) can also connect the electric devices and input appropriate stimulus feedback as induced electromotive force, and thus the coupled circuits can be regulated. In this paper, two Chua circuits are coupled by an inductor, which connects one capacitor of the coupled Chua circuits, and magnetic field coupling is activated because time-varying magnetic field and induced electromotive force are generated in the coupling inductor. For numerical approach and dynamical analysis, scale transformation is applied to get dimensionless dynamical systems under magnetic field coupling. Then the controllable parameter mapped from the coupling inductor is adjusted carefully to detect the synchronization approach. The same investigation is also carried out on the circuit platform Multisim. It is found that inductor coupling can benefit the realization of synchronization between two chaotic Chua systems. Complete synchronization can be reached between two identical circuits when the inductor coupling is activated with appropriate intensity. While phase synchronization can be stabilized between two non-identical circuits, chaotic oscillation can be suppressed by periodic Chua circuit under inductor coupling. The potential mechanism for inductor-based synchronization can be explained as magnetic field coupling, which field energy can be propagated via the coupling inductor with time-varying induced electromotive force, and it can give possible insights to know the information encoding between neurons and neural circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena, A.D., et al.: FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27, 66–80 (2015)

    Article  MathSciNet  Google Scholar 

  2. Zhang, G., Ma, J., Alsaedi, A., et al.: Dynamical behavior and application in Josephson junction coupled by memristor. Appl. Math. Comput. 321, 290–299 (2018)

    MathSciNet  Google Scholar 

  3. Kengne, J., Negou, A.N., Tchiotsop, D.: Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dyn. 88, 2589–2608 (2017)

    Article  Google Scholar 

  4. Sabarathinam, S., Volos, C.K., Thamilmaran, K.: Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator. Nonlinear Dyn. 87, 37–49 (2017)

    Article  Google Scholar 

  5. Singh, J.P., Roy, B.K.: A more chaotic and easily hardware implementable new 3-D chaotic system in comparison with 50 reported systems. Nonlinear Dyn. 93, 1121–1148 (2018)

    Article  MATH  Google Scholar 

  6. Rajagopal, K., Viet-Thanh, P., Tahir, F.R., et al.: A chaotic jerk system with non-hyperbolic equilibrium: dynamics, effect of time delay and circuit realisation. Pramana J. Phys. 90(4), 52 (2018)

    Article  Google Scholar 

  7. Crotty, P., Schult, D., Segall, K.: Josephson junction simulation of neurons. Phys. Rev. E 82, 011914 (2010)

    Article  Google Scholar 

  8. Muppalla, P.R., Gargiulo, O., Mirzaei, S.I., et al.: Bistability in a mesoscopic Josephson junction array resonator. Phys. Rev. B 97, 024518 (2018)

    Article  Google Scholar 

  9. Dobrowolski, T., Jarmolinski, A.: Is there a relationship between curvature and inductance in the Josephson junction? Results Phys. 8, 48–51 (2018)

    Article  Google Scholar 

  10. Feali, M.S., Ahmadi, A., Hayati, M.: Implementation of adaptive neuron based on memristor and memcapacitor emulators. Neurocomputing 309, 157–167 (2018)

    Article  Google Scholar 

  11. Wu, F.Q., Wang, C.N., Xu, Y., et al.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6, 28 (2016)

    Article  Google Scholar 

  12. Lv, M., Wang, C.N., Ren, G.D., et al.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  13. Itoh, M., Chua, L.O.: Memrisor oscillators. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)

    Article  MATH  Google Scholar 

  14. Cafagna, D., Grassi, G.: On the simplest fractional-order memristor-based chaotic system. Nonlinear Dyn. 70, 1185–1197 (2012)

    Article  MathSciNet  Google Scholar 

  15. Wu, F.Q., Hayat, T., Aan, X.L., et al.: Can Hamilton energy feedback suppress the chameleon chaotic flow? Nonlinear Dyn. 94, 669–677 (2018)

    Article  Google Scholar 

  16. Yao, C.G., Ma, J., Li, C., et al.: The effect of process delay on dynamical behaviors in a self-feedback nonlinear oscillator. Commun. Nonlinear Sci. Numer. Simul. 39, 99–107 (2016)

    Article  MathSciNet  Google Scholar 

  17. Danca, M.F., Garrappa, R.: Suppressing chaos in discontinuous systems of fractional order by active control. Appl. Math. Comput. 257, 89–102 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Wang, C., Chu, R., Ma, J.: Controlling a chaotic resonator by means of dynamic track control. Complexity 21(1), 370–378 (2015)

    Article  MathSciNet  Google Scholar 

  19. Gamez-Guzman, L., Cruz-Hernandez, C., Lopez-Gutierrez, R.M., et al.: Synchronization of Chua’s circuits with multi-scroll attractors: application to communication. Commun. Nonlinear Sci. Numer. Simul. 14, 2765–2775 (2009)

    Article  Google Scholar 

  20. Koronovskii, A.A., Moskalenko, O.I., Hramov, A.E.: On the use of chaotic synchronization for secure communication. Phys. Uspekhi 52, 1213–1238 (2009)

    Article  Google Scholar 

  21. Ahmad, I., Shafiq, M., Al-Sawalha, M.M.: Globally exponential multi switching-combination synchronization control of chaotic systems for secure communications. Chin. J. Phys. 56(3), 974–987 (2018)

    Article  Google Scholar 

  22. Kaur, M., Kumar, V.: Efficient image encryption method based on improved Lorenz chaotic system. Electron. Lett. 54(9), 562–563 (2018)

    Article  Google Scholar 

  23. Silva-Garcia, V.M., Flores-Carapia, R., Renteria-Marquez, C., et al.: Substitution box generation using Chaos: an image encryption application. Appl. Math. Comput. 332, 123–135 (2018)

    MathSciNet  Google Scholar 

  24. Li, X.W., Li, C.Q., Lee, I.K.: Chaotic image encryption using pseudo-random masks and pixel mapping. Signal Process 125, 48–63 (2015)

    Article  Google Scholar 

  25. Wang, C., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)

    Article  MathSciNet  Google Scholar 

  26. Zhang, G., Wu, F.Q., Hayat, T., et al.: Selection of spatial pattern on resonant network of coupled memristor and Josephson junction. Commun. Nonlinear Sci. Numer. Simul. 65, 79–90 (2018)

    Article  MathSciNet  Google Scholar 

  27. Haim, L.B., Rowitch, D.H.: Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci. 18(1), 31 (2017)

    Article  Google Scholar 

  28. Hu, X.Y., Liu, C.X., Liu, L., et al.: An electronic implementation for Morris–Lecar neuron model. Nonlinear Dyn. 84, 2317–2332 (2016)

    Article  MathSciNet  Google Scholar 

  29. Heidarpur, M., Ahmadi, A., Kandalaft, N.: A digital implementation of 2D Hindmarsh–Rose neuron. Nonlinear Dyn. 89, 2259–2272 (2017)

    Article  Google Scholar 

  30. Xu, Y., Jia, Y., Ma, J., et al.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1349 (2018)

    Article  Google Scholar 

  31. Lv, M., Ma, J., Yao, Y.G. et al.: Synchronization and wave propagation in neuronal network under field coupling. Sci. China Tech. Sci. 61 (2018). https://doi.org/10.1007/s11431-018-9268-2

  32. Guo, S.L., Xu, Wang, C.N. et al.: Collective response, synapse coupling and field coupling in neuronal network. Chaos & Solitons Fractals. 105, 120–127 (2017)

  33. Ma, J., Wu, F.Q., Alsaedi, A., et al.: Crack synchronization of chaotic circuits under field coupling. Nonlinear Dyn. 93, 2057–2069 (2018)

    Article  Google Scholar 

  34. Chua, L., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuts Syst. 33(11), 1072–1118 (1986)

    Article  MATH  Google Scholar 

  35. Bao, B.C., Li, Q.D., Wang, N., et al.: Multistability in Chua’s circuit with two stable node-foci. Chaos 26, 043111 (2016)

    Article  MathSciNet  Google Scholar 

  36. Barboza, R., Chua, L.O.: The four-element Chua’s circuit. Int. J. Bifurc. Chaos 18, 943–955 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wada, M., Nishio, Y., Ushida, A.: Analysis of bifurcation phenomena on two chaotic circuits coupled by an inductor. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 80(5), 869–875 (1997)

    Google Scholar 

  38. Nishio, Y., Ushida, A.: On a ring of chaotic circuits coupled by inductors. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 78(5), 608–617 (1995)

    Google Scholar 

  39. Nishio, Y., Ushida, A.: Spatio-temporal chaos in simple coupled chaotic circuits. IEEE Trans. Circuits Syst. I 42(10), 678–686 (1995)

    Article  Google Scholar 

  40. Yamauchi, M., Wada, M., Nishio, Y., et al.: Wave propagation phenomena of phase states in oscillators coupled by inductors as a ladder. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 82(11), 2592–2598 (1999)

    Google Scholar 

  41. Komatsu, Y., Uwate, Y., Nishio, Y.: Synchronization of chaotic circuits with asymmetric coupling by nonlinear mutual Inductors. In: ICSES 2006 international conference on signals and electronic systems, Łódź, Poland, 17–20 Septermber 2006

  42. Ren, G., Xue, Y., Li, Y., et al.: Field coupling benefits signal exchange between Colpitts systems. Appl. Math. Comput. 342, 45–54 (2019)

    MathSciNet  Google Scholar 

  43. Matsumoto, T., Chua, L., Komuro, M.: The double scroll. IEEE Trans. Circuts Syst. 32(8), 797–818 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pikovsky, A., Roseblum, M., Kurths, J.: Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  45. Tessone, C.J., Toral, R., Mirasso, C. R. et al.: Synchronization properties of coupled FitzHugh–Nagumo system, Acta Armamentarii. In: Proceedings-International school of physics enrico fermi, vol. 155, pp. 461–468. IOS Press, Ohmsha (1999)

  46. Wu, F.Q., Zhou, P., Alsaedi, A., et al.: Synchronization dependence on initial setting of chaotic systems without equilibria. Chaos Solitons & Fractals 110, 124–132 (2018)

    Article  MathSciNet  Google Scholar 

  47. Wu, F.Q., Ma, J., Ren, G.D.: Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation. J. Zhejiang Univ. Sci. A 19, 889–903 (2018)

    Article  Google Scholar 

  48. Lu, C., Shi, B.: Circuit design of an adjustable neuron activation function and its derivative. Electron. Lett. 36(6), 553–555 (2000)

    Article  Google Scholar 

  49. Yakopcic, C., Hasan, R., Taha, T.M., et al.: Memristor-based neuron circuit and method for applying learning algorithm in SPICE. Electron. Lett. 50(7), 492–494 (2014)

    Article  Google Scholar 

  50. Horio, Y., Taniguchi, T., Aihara, K.: An asynchronous spiking chaotic neuron integrated circuit. Neurocomputing 64, 447–472 (2005)

    Article  Google Scholar 

  51. Mizoguchi, N., Nagamatsu, Y., Aihara, K., et al.: A two-variable silicon neuron circuit based on the Lzhikevich model. Artif. Life Robot. 16(3), 383–388 (2011)

    Article  Google Scholar 

  52. Destexhe, A., Marder, E.: Plasticity in single neuron and circuit computations. Nature 431(7010), 789 (2004)

    Article  Google Scholar 

  53. Xu, Y.M., Yao, Z., Hobiny, A . et al.: Differential coupling contributes to synchronization via a capacitor connection between chaotic circuits. Front. Inf. Technol. Electro. Eng. (2018). https://doi.org/10.1631/FITEE.1800499

Download references

Acknowledgements

This Project is supported by National Natural Science Foundation of China under Grants 11765011 and 11672122. The authors give thanks to Dr. F Q Wu for his helpful discussion and numerical checking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Ma, J., Yao, Y. et al. Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dyn 96, 205–217 (2019). https://doi.org/10.1007/s11071-019-04784-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04784-2

Keywords

Navigation