Skip to main content
Log in

Chimera states of neuron networks with adaptive coupling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To better understand the diversity of dynamical patterns in the brain network of cerebral cortex, we study the collective behaviors of coupled neurons in complex networks with adaptive coupling. Based on the mutual interaction between dynamics and coupling strength in neuron systems, we let the coupling matrix evolve with the dynamics of neurons. We find that with suitable phase parameters, the coupling matrix will be self-organized into stabilized states and chimera states will be induced. The patterns of these chimera states may be different and abundant, depending on the different network topologies such as the fully connected, random, and scale-free networks. In particular, we apply this adaptive model to the realistic network of cerebral cortex and interestingly find that the adaptive coupling can also induce a diversity of chimera states, which may provide a new insight for the high capability of flexible brain functions. Moreover, we find that the preference of observing chimera states in heterogeneous networks is greater than that in homogeneous networks, and the latter is greater than that in the fully connected network, which may be one of the reasons for the nature to choose the specific sparse and heterogeneous structure of our brain network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Acebron, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137 (2005)

    Article  Google Scholar 

  2. Boccaletti, S., Latora, V., Moreno, Y.: Complex networks: structure and dynamics. Phys. Rep. 424, 175 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93 (2008)

    Article  MathSciNet  Google Scholar 

  4. Gomez-Gardenes, J., Gomez, S., Arenas, A., Moreno, Y.: Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 106, 128701 (2011)

    Article  Google Scholar 

  5. Zhang, X., Hu, X., Kurths, J., Liu, Z.: Explosive synchronization in a general complex network. Phys. Rev. E 88, 010802(R) (2013)

    Article  Google Scholar 

  6. Zhang, X., Zou, Y., Boccaletti, S., Liu, Z.: Explosive synchronization as a process of explosive percolation in dynamical phase space. Sci. Rep. 4, 5200 (2014)

    Article  Google Scholar 

  7. Kim, M., Mashour, G.A., Moraes, S., Vanini, G., Tarnal, V., Janke, E., Hudetz, A.G., Lee, U.: Functional and topological conditions for explosive synchronization develop in human brain networks with the onset of anesthetic-induced unconsciousness. Front. Comput. Neurosci. 10, 1 (2016)

    Article  Google Scholar 

  8. Zhang, X., Boccaletti, S., Guan, S., Liu, Z.: Explosive synchronization in adaptive and multilayer networks. Phys. Rev. Lett. 114, 038701 (2015)

    Article  Google Scholar 

  9. Peron, T.K.D.M., Rodrigues, F.A.: Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations. Phys. Rev. E 86, 056108 (2012)

    Article  Google Scholar 

  10. Zou, Y., Pereira, T., Small, M., Liu, Z., Kurths, J.: Basin of attraction determines hysteresis in explosive synchronization. Phys. Rev. Lett. 112, 114102 (2014)

    Article  Google Scholar 

  11. Bi, H., Hu, X., Boccaletti, S., Wang, X., Zou, Y., Liu, Z., Guan, S.: Coexistence of quantized, time dependent, clusters in globally coupled oscillators. Phys. Rev. Lett. 117, 204101 (2016)

    Article  Google Scholar 

  12. Ji, P., Peron, T.K.D.M., Menck, P.J., Rodrigues, F.A., Kurths, J.: Cluster explosive synchronization in complex networks. Phys. Rev. Lett. 110, 218701 (2013)

    Article  Google Scholar 

  13. Kuramoto, Y., Battogtokh, D.: Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380 (2002)

    Google Scholar 

  14. Sethia, G.C., Sen, A., Atay, F.M.: Clustered chimera states in delay-coupled oscillator systems. Phys. Rev. Lett. 100, 144102 (2008)

    Article  Google Scholar 

  15. Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004)

    Article  Google Scholar 

  16. Omelchenko, E., Maistrenko, Y.L., Tass, P.A.: Chimera states: the natural link between coherence and incoherence. Phys. Rev. Lett. 100, 044105 (2008)

    Article  Google Scholar 

  17. Martens, E.A., Laing, C.R., Strogatz, S.H.: Solvable model of spiral wave chimeras. Phys. Rev. Lett. 104, 044101 (2010)

    Article  Google Scholar 

  18. Omelchenko, I., Provata, A., Hizanidis, J., Schöll, E., Hövel, P.: Robustness of chimera states for coupled Fitzhugh–Nagumo oscillators. Phys. Rev. E 91, 022917 (2015)

    Article  MathSciNet  Google Scholar 

  19. Boccaletti, S., Almendral, J.A., Guan, S., Leyva, I., Liu, Z., Sendiña-Nadal, I., Zou, Y.: Explosive transitions in complex networks structure and dynamics: percolation and synchronization. Phys. Rep. 660, 1 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Abrams, D.M., Mirollo, R., Strogatz, S.H., Wiley, D.A.: Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. 101, 084103 (2008)

    Article  Google Scholar 

  21. Sakaguchi, H.: Instability of synchronized motion in nonlocally coupled neural oscillators. Phys. Rev. E 73, 031907 (2006)

    Article  MathSciNet  Google Scholar 

  22. Pikovsky, A., Rosenblum, M.: Partially integrable dynamics of hierarchical populations of coupled oscillators. Phys. Rev. Lett. 101, 264103 (2008)

    Article  Google Scholar 

  23. Rattenborg, N.C., Amlaner, C.J., Lima, S.L.: Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci. Biobehav. Rev. 24, 817 (2000)

    Article  Google Scholar 

  24. Mathews, C.G., Lesku, J.A., Lima, S.L., Amlaner, C.J.: Asynchronous eye closure as an anti-predator behavior in the western fence lizard. Ethology 112, 286 (2006)

    Article  Google Scholar 

  25. Ma, R., Wang, J., Liu, Z.: Robust features of chimera states and the implementation of alternating chimera states. Europhys. Lett. 91, 40006 (2010)

    Article  Google Scholar 

  26. Tamaki, M., Bang, J.W., Watanabe, T., Sasaki, Y.: Night watch in one brain hemisphere during sleep associated with the first-night effect in humans. Curr. Biol. 26, 1190 (2016)

    Article  Google Scholar 

  27. Omelchenko, I., Omel’chenko, E., Hövel, P., Schöll, E.: When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys. Rev. Lett. 110, 224101 (2013)

    Article  Google Scholar 

  28. Hizanidis, J., Kanas, V.G., Bezerianos, A., Bountis, T.: Chimera states in networks of nonlocally coupled hindmarsh-rose neuron models. T. Int. J. Bifurc. Chaos 24, 1450030 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Olmi, S., Politi, A., Torcini, A.: Collective chaos in pulse-coupled neural networks. Europhys. Lett. 92, 60007 (2010)

    Article  Google Scholar 

  30. Santos, M.S., Szezech, J.D., Borges, F.S., Iarosz, K.C., Caldas, I.L., Batista, A.M., Viana, R.L., Kurths, J.: Chimera-like states in a neuronal network model of the cat brain. Chaos Solitons Fractals 101, 86 (2017)

    Article  Google Scholar 

  31. Hizanidis, J., Kouvaris, N.E., Zamora-Lopez, G., Diaz-Guilera, A., Antonopoulos, C.G.: Chimera-like states in modular neural networks. Sci. Rep. 6, 19845 (2016)

    Article  Google Scholar 

  32. Tian, C., Bi, H., Zhang, X., Guan, S., Liu, Z.: Asymmetric couplings enhance the transition from chimera state to synchronization. Phys. Rev. E 96, 052209 (2017)

    Article  Google Scholar 

  33. Tian, C., Zhang, X., Wang, Z., Liu, Z.: Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling. Front. Phys. 12, 128904 (2017)

    Article  Google Scholar 

  34. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464 (1998)

    Article  Google Scholar 

  35. Markram, H., Lubke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 275, 213 (1997)

    Article  Google Scholar 

  36. Caporale, N., Dan, Y.: Spike timing-dependent plasticity: a hebbian learning rule. Ann. Rev. Neurosci. 31, 25 (2008)

    Article  Google Scholar 

  37. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  38. Tero, A., et al.: Rules for biologically inspired adaptive network design. Science 327, 439 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Harris, K.D., et al.: Organization of cell assemblies in the hippocampus. Nature (London) 424, 552 (2003)

    Article  Google Scholar 

  40. Gross, T., Blasius, B.: Cascade dynamics of complex propagation. J. R. Soc. Interface 5, 259 (2008)

    Article  Google Scholar 

  41. Aoki, T., Aoyagi, T.: Self-organized network of phase oscillators coupled by activity-dependent interactions. Phys. Rev. E 84, 066109 (2011)

    Article  Google Scholar 

  42. Gutierrez, R., Amann, A., Assenza, S., Gomez-Gardenes, J., Latora, V., Boccaletti, S.: Emerging meso-and macroscales from synchronization of adaptive networks. Phys. Rev. Lett. 107, 234103 (2011)

    Article  Google Scholar 

  43. Aoki, T.: Self-organization of a recurrent network under ongoing synaptic plasticity. Neural Netw. 62, 11 (2015)

    Article  MATH  Google Scholar 

  44. Kasatkin, D.V., Yanchuk, S., Scholl, E., Nekorkin, V.I.: Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings. Phys. Rev. E 96, 062211 (2017)

    Article  Google Scholar 

  45. Wang, H., Li, X.: Synchronization and chimera states of frequency-weighted Kuramoto-oscillator networks. Phys. Rev. E 83, 066214 (2011)

    Article  Google Scholar 

  46. Chandrasekar, V.K., Sheeba, J.H., Subash, B., Lakshmanan, M., Kurths, J.: Adaptive coupling induced multi-stable states in complex networks. Physica D 267, 36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kemeth, F.P., Haugland, S.W., Schmidt, L., Kevrekidis, I.G., Krischer, K.: A classification scheme for chimera states. Chaos 26, 094815 (2016)

    Article  Google Scholar 

  48. Zhu, Y., Zheng, Z., Yang, J.: Chimera states on complex networks. Phys. Rev. E 89, 022914 (2014)

    Article  Google Scholar 

  49. Albert, R., Barabasi, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu, Z., Lai, Y.C., Ye, N., Dasgupta, P.: Connectivity distribution and attack tolerance of general networks with both preferential and random attachments. Phys. Lett. A 303, 337 (2002)

    Article  MATH  Google Scholar 

  51. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, J.V., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6, 1479 (2008)

    Article  Google Scholar 

  52. Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA 106, 2035 (2009)

    Article  Google Scholar 

  53. Hong, H., Strogatz, S.H.: Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators. Phys. Rev. Lett. 106, 054102 (2011)

    Article  Google Scholar 

  54. Borgers, C., Kopell, N.: Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput. 15, 509 (2003)

    Article  MATH  Google Scholar 

  55. Restrepo, J.G., Ott, E., Hunt, B.R.: Synchronization in large directed networks of coupled phase oscillators. Chaos 16, 015107 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang, X., Guan, S., Zou, Y., Chen, X., Liu, Z.: Suppressing explosive synchronization by contrarians. Europhys. Lett. 113, 28005 (2016)

    Article  Google Scholar 

  57. Soriano, J., Martinez, M.R., Tlusty, T., Moses, E.: Development of input connections in neural cultures. Proc. Natl. Acad. Sci. USA 105, 13758 (2008)

    Article  Google Scholar 

  58. Vogels, T.P., Abbott, L.F.: Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nat. Neurosci. 12, 483 (2009)

    Article  Google Scholar 

  59. Seliger, P., Young, S.C., Tsimring, L.S.: Plasticity and learning in a network of coupled phase oscillators. Phys. Rev. E 65, 041906 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  60. Tang, J., Zhang, J., Ma, J., Luo, J.: Noise and delay sustained chimera state in small world neuronal network. Sci. China Technol. Sci. 61, (2018). https://doi.org/10.1007/sl1431-017-9282-x

  61. Liu, Z., Lai, Y.C.: Coherence resonance in coupled chaotic oscillators. Phys. Rev. Lett. 86, 4737 (2001)

    Article  Google Scholar 

  62. Zhan, M., Wei, G., Lai, C., Lai, Y.C., Liu, Z.: Coherence resonance near the hopf bifurcation in coupled chaotic oscillators. Phys. Rev. E 66, 036201 (2002)

    Article  Google Scholar 

  63. Zhu, L., Lai, Y.C., Liu, Z., Raghu, A.: Can noise make nonbursting chaotic systems more regular? Phys. Rev. E 66, 015204 (2002)

    Article  Google Scholar 

  64. Liu, Z., Lai, Y.C., Lopez, J.M.: Noise-induced enhancement of chemical reactions in chaotic flows. Chaos 12, 417 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the NNSF of China under Grant Nos. 11675056 and 11835003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zonghua Liu.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, S., Tian, C., Kang, L. et al. Chimera states of neuron networks with adaptive coupling. Nonlinear Dyn 96, 75–86 (2019). https://doi.org/10.1007/s11071-019-04774-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04774-4

Keywords

Navigation