Skip to main content
Log in

Distributed adaptive fault-tolerant attitude tracking of multiple flexible spacecraft on \(\textit{SO}(3)\)

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents distributed adaptive fault-tolerant control for the attitude tracking of multiple flexible spacecraft on \(\textit{SO}(3)\) without modal variable measurement. Assume that the communication graph among the followers is undirected and connected and there exists at least one follower linked to the leader. To deal with the distributed tracking on \(\textit{SO}(3)\), a finite-time observer is designed to estimate the leader’s information for the followers. A distributed adaptive fault-tolerant controller is proposed to achieve the attitude tracking based on the estimation of the unmeasurable modal variables. The separation principle between the finite-time observer and the proposed controller is adopted to prove the controller convergence. Since the controllers are developed on \(\textit{SO}(3)\) directly, the singularity and ambiguity associated with other attitude representations can be avoided. Finally, numerical simulations are conducted to demonstrate the effectiveness of the proposed control protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. VanDyke, M.C., Hall, C.D.: Decentralized coordinated attitude control within a formation of spacecraft. J. Guid. Control Dyn. 29(5), 1101–1109 (2006)

    Article  Google Scholar 

  2. Chen, T., Wen, H.: Autonomous assembly with collision avoidance of a fleet of flexible spacecraft based on disturbance observer. Acta Astronaut. 147, 86–96 (2018)

    Article  Google Scholar 

  3. Abdessameud, A., Tayebi, A.: Attitude synchronization of a group of spacecraft without velocity measurements. IEEE Trans. Autom. Control 54(11), 2642–2648 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gui, H., Vukovich, G.: Distributed almost global finite-time attitude consensus of multiple spacecraft without velocity measurements. Aerosp. Sci. Technol. 75, 284–296 (2018)

    Article  Google Scholar 

  5. Mayhew, C.G., Sanfelice, R.G., Sheng, J., Arcak, M., Teel, A.R.: Quaternion-based hybrid feedback for robust global attitude synchronization. IEEE Trans. Autom. Control 57(8), 2122–2127 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Meng, Z., Ren, W., You, Z.: Decentralised cooperative attitude tracking using modified Rodriguez parameters based on relative attitude information. Int. J. Control 83(12), 2427–2439 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gui, H., de Ruiter, A.H.J.: Global finite-time attitude consensus of leader-following spacecraft systems based on distributed observers. Automatica 91, 225–232 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, T., Shan, J., Wen, H.: Distributed adaptive attitude control for networked under actuated flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. (2018) (in press)

  9. Bohn, J., Sanyal, A.K.: Almost global finite-time stabilization of rigid body attitude dynamics using rotation matrices. Int. J. Robust Nonlinear Control 26(9), 2008–2022 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lee, T.: Exponential stability of an attitude tracking control system on \(SO(3)\) for large-angle rotational maneuvers. Syst. Control Lett. 61(1), 231–237 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mayhew, C.G., Teel, A.R.: Synergistic hybrid feedback for global rigid-body attitude tracking on \(SO(3)\). IEEE Trans. Autom. Control 58(11), 2730–2742 (2013)

    Article  MATH  Google Scholar 

  12. Zou, Y., Meng, Z., Zuo, Z.: Rotation-matrix-based attitude synchronization of multiple spacecraft without velocity measurements. In: 2017 11th Asian Control Conference (ASCC), pp. 96–101 (2017). https://doi.org/10.1109/ASCC.2017.8287149

  13. Zheng, Z., Xu, Y., Zhang, L., Song, S.: Decentralized attitude synchronization tracking control for multiple spacecraft under directed communication topology. Chin. J. Aeronaut. 29(4), 995–1006 (2016)

    Article  Google Scholar 

  14. Du, H., Li, S.: Attitude synchronization control for a group of flexible spacecraft. Automatica 50(2), 646–651 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, T., Chen, G.: Distributed adaptive tracking control of multiple flexible spacecraft under various actuator and measurement limitations. Nonlinear Dyn. 91(3), 1571–1586 (2018)

    Article  MATH  Google Scholar 

  16. Du, H., Li, S.: Attitude synchronization for flexible spacecraft with communication delays. IEEE Trans. Autom. Control 61(11), 3625–3630 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zou, A.-M., de Ruiter, A.H., Kumar, K.D.: Distributed attitude synchronization control for a group of flexible spacecraft using only attitude measurements. Inf. Sci. 343, 66–78 (2016)

    Article  MathSciNet  Google Scholar 

  18. Wang, Q., Duan, Z., Lv, Y.: Distributed attitude synchronization control for multiple flexible spacecraft without modal variable measurement. Int. J. Robust Nonlinear Control 28(10), 3435–3453 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bounemeur, A., Chemachema, M., Essounbouli, N.: Indirect adaptive fuzzy fault-tolerant tracking control for mimo nonlinear systems with actuator and sensor failures. ISA Trans. 79, 45–61 (2018)

    Article  Google Scholar 

  20. Yin, S., Xiao, B., Ding, S.X., Zhou, D.: A review on recent development of spacecraft attitude fault tolerant control system. IEEE Trans. Ind. Electron. 63(5), 3311–3320 (2016)

    Article  Google Scholar 

  21. Shen, Q., Wang, D., Zhu, S., Poh, E.K.: Robust control allocation for spacecraft attitude tracking under actuator faults. IEEE Trans. Control Syst. Technol. 25(3), 1068–1075 (2017)

    Article  Google Scholar 

  22. Xiao, B., Huo, M., Yang, X., Zhang, Y.: Fault-tolerant attitude stabilization for satellites without rate sensor. IEEE Trans. Ind. Electron. 62(11), 7191–7202 (2015)

    Article  Google Scholar 

  23. Bustan, D., Sani, S.H., Pariz, N.: Adaptive fault-tolerant spacecraft attitude control design with transient response control. IEEE/ASME Trans. Mechatron. 19(4), 1404–1411 (2014)

    Article  Google Scholar 

  24. Gui, H., Vukovich, G.: Adaptive fault-tolerant spacecraft attitude control using a novel integral terminal sliding mode. Int. J. Robust Nonlinear Control 27(16), 3174–3196 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hu, Q., Shao, X., Chen, W.-H.: Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode. IEEE Trans. Aerosp. Electron. Syst. 54(1), 2–17 (2018)

    Article  Google Scholar 

  26. Shen, Q., Wang, D., Zhu, S., Poh, K.: Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation. IEEE Trans. Aerosp. Electron. Syst. 51(3), 2390–2405 (2015)

    Article  Google Scholar 

  27. Sakthivel, R., Selvi, S., Mathiyalagan, K.: Fault-tolerant sampled-data control of flexible spacecraft with probabilistic time delays. Nonlinear Dyn. 79(3), 1835–1846 (2015)

    Article  MATH  Google Scholar 

  28. Ma, Y., Jiang, B., Tao, G., Cheng, Y.: Uncertainty decomposition-based fault-tolerant adaptive control of flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. 51(2), 1053–1068 (2015)

    Article  Google Scholar 

  29. Hu, Q., Xiao, B.: Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness. Nonlinear Dyn. 64(1–2), 13–23 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sun, G., Xu, S., Li, Z.: Finite-time fuzzy sampled-data control for nonlinear flexible spacecraft with stochastic actuator failures. IEEE Trans. Ind. Electron. 64(5), 3851–3861 (2017)

    Article  Google Scholar 

  31. Cao, X., Yue, C., Liu, M.: Fault-tolerant sliding mode attitude tracking control for flexible spacecraft with disturbance and modeling uncertainty. Adv. Mech. Eng. 9(3), 1–9 (2017)

    Article  Google Scholar 

  32. Huang, D., Wang, Q., Duan, Z.: Distributed attitude control for multiple flexible spacecraft under actuator failures and saturation. Nonlinear Dyn. 88(1), 529–546 (2017)

    Article  MATH  Google Scholar 

  33. Xiao, B., Hu, Q., Zhang, Y.: Fault-tolerant attitude control for flexible spacecraft without angular velocity magnitude measurement. J. Guid. Control Dyn. 34(5), 1556–1561 (2011)

    Article  Google Scholar 

  34. Chen, T., Shan, J.: Rotation-matrix-based attitude tracking for multiple flexible spacecraft with actuator faults. J. Guid Control Dyn. (2018) (in press)

  35. Di Gennaro, S.: Passive attitude control of flexible spacecraft from quaternion measurements. J. Optim. Theory Appl. 116(1), 41–60 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lopez-Ramirez, F., Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time and fixed-time observer design: implicit Lyapunov function approach. Automatica 87, 52–60 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, S., Wang, X.: Finite-time consensus and collision avoidance control algorithms for multiple AUVs. Automatica 49(11), 3359–3367 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Atassi, A.N., Khalil, H.K.: A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans. Autom. Control 44(9), 1672–1687 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Berkane, S., Abdessameud, A., Tayebi, A.: Hybrid global exponential stabilization on \(SO(3)\). Automatica 81, 279–285 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Cao, X., Yue, C., Liu, M.: Flexible satellite attitude maneuver via constrained torque distribution and active vibration suppression. Aerosp. Sci. Technol. 67, 387–397 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjun Shan.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Shan, J. Distributed adaptive fault-tolerant attitude tracking of multiple flexible spacecraft on \(\textit{SO}(3)\). Nonlinear Dyn 95, 1827–1839 (2019). https://doi.org/10.1007/s11071-018-4661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4661-8

Keywords

Navigation