Skip to main content
Log in

Design of delayed fractional state variable filter for parameter estimation of fractional nonlinear models

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a novel direct parameter estimation method for continuous-time fractional nonlinear models. This is achieved by adapting a filter-based approach that uses the delayed fractional state variable filter for estimating the nonlinear model parameters directly from the measured sampled input–output data. A class of fractional nonlinear ordinary differential equation models is considered, where the nonlinear terms are linear with respect to the parameters. The nonlinear model equations are reformulated such that it allows a linear estimator to be used for estimating the model parameters. The required fractional time derivatives of measured input–output data are computed by a proposed delayed fractional state variable filter. The filter comprises of a cascade of all-pass filters and a fractional Butterworth filter, which forms the core part of the proposed parameter estimation method. The presented approaches for designing the fractional Butterworth filter are the so-called, square root base and compartmental fractional Butterworth design. According to the results, the parameters of the fractional-order nonlinear ordinary differential model converge to the true values and the estimator performs efficiently for the output error noise structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Acharya, A., Das, S., Pan, I., Das, S.: Extending the concept of analog butterworth filter for fractional order systems. Signal Process. 94, 409–420 (2014)

    Article  Google Scholar 

  2. Allafi, W., Burnham, K.J.: Identification of fractional-order continuous-time hybrid box-jenkins models using refined instrumental variable continuous-time fractional-order method. In: Advances in Systems Science—Proceedings of the International Conference on Systems Science, pp. 785–794 (2013)

    Google Scholar 

  3. Allafi, W., Uddin, K., Zhang, C., Sha, R.M.R.A., Marco, J.: On-line scheme for parameter estimation of nonlinear lithium ion battery equivalent circuit models using the simplified refined instrumental variable method for a modified wiener continuous-time model. Appl. Energy 204, 497–508 (2017). https://doi.org/10.1016/j.apenergy.2017.07.030

    Article  Google Scholar 

  4. Allafi, W., Zajic, I., Burnham, K.J.: Identification of Fractional Order Models: Application to 1D Solid Diffusion System Model of Lithium Ion Cell, pp. 63–68. Springer, Cham (2015)

    Google Scholar 

  5. Anderson, S.R., Kadirkamanathan, V.: Modelling and identification of non-linear deterministic systems in the delta-domain. Automatica 43(11), 1859–1868 (2007)

    Article  MathSciNet  Google Scholar 

  6. Aslam, M.S., Chaudhary, N.I., Raja, M.A.Z.: A sliding-window approximation-based fractional adaptive strategy for hammerstein nonlinear armax systems. Nonlinear Dyn. 87(1), 519–533 (2017). https://doi.org/10.1007/s11071-016-3058-9

    Article  MATH  Google Scholar 

  7. Azar, A., Vaidyanathan, S., Ouannas, A.: Fractional order control and synchronization of chaotic systems, vol. 688. Springer, Berlin (2017)

    Book  Google Scholar 

  8. Blinchikoff, H.J.: Filtering in the Time and Frequency Domains. Electromagnetic Waves. Institution of Engineering and Technology, Stevenage (2001)

    Book  Google Scholar 

  9. Buller, S., Thele, M., Karden, E., Doncker, R.W.D.: Impedance-based non-linear dynamic battery modeling for automotive applications. J. Power Sources 113(2), 422–430 (2003). https://doi.org/10.1016/S0378-7753(02)00558-X. Proceedings of the International Conference on Lead-Acid Batteries, LABAT ’02

    Article  Google Scholar 

  10. Butterworth, S.: On the theory of filter amplifiers. Wirel. Eng. 7(6), 536–541 (1930)

    Google Scholar 

  11. Cahoy, D.O., Uchaikin, V.V., Woyczynski, W.A.: Parameter estimation for fractional poisson processes. J. Stat. Plan. Inference 140(11), 3106–3120 (2010). https://doi.org/10.1016/j.jspi.2010.04.016

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, D., Chen, Y., Xue, D.: Digital fractional order Savitzky–Golay differentiator. IEEE Trans. Circuits Syst. II Express Briefs 58(11), 758–762 (2011). https://doi.org/10.1109/TCSII.2011.2168022

    Article  Google Scholar 

  13. Chen, Y., Wei, Y., Zhou, X., Wang, Y.: Stability for nonlinear fractional order systems: an indirect approach. Nonlinear Dyn. 89(2), 1011–1018 (2017). https://doi.org/10.1007/s11071-017-3497-y

    Article  MATH  Google Scholar 

  14. Cois, O., Oustaloup, A., Poinot, T., Battaglia, J.L.: Fractional state variable filter for system identification by fractional model. In: 2001 European Control Conference (ECC), pp. 2481–2486 (2001)

  15. Essa, M., Aboelela, M., Hassan, M.: Application of fractional order controllers on experimental and simulation model of hydraulic servo system. In: Ahmad Taher A, Sundarapandian V, Adel O (eds) Fractional Order Control and Synchronization of Chaotic Systems, pp. 277–324. Springer, Berlin (2017)

    Chapter  Google Scholar 

  16. Garnier, H., Wang, L., Young, P.C.: Direct Identification of Continuous-time Models from Sampled Data: Issues, Basic Solutions and Relevance, pp. 1–29. Springer, London (2008)

    Google Scholar 

  17. Gutiérrez, R.E., Rosário, J.M., Tenreiro Machado, J.: Fractional order calculus: basic concepts and engineering applications. Math. Probl. Eng. 2010, 1–19 (2010)

    Article  Google Scholar 

  18. Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order chua’s system. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42(8), 485–490 (1995). https://doi.org/10.1109/81.404062

    Article  Google Scholar 

  19. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  20. Karami-Mollaee, A., Tirandaz, H., Barambones, O.: On dynamic sliding mode control of nonlinear fractional-order systems using sliding observer. Nonlinear Dyn. 92(3), 1379–1393 (2018). https://doi.org/10.1007/s11071-018-4133-1

    Article  MATH  Google Scholar 

  21. Khadhraoui, A., Jelassi, K., Trigeassou, J.C., Melchior, P.: Identification of fractional model by least-squares method and instrumental variable. J. Comput. Nonlinear Dyn. 10(5), 050801 (2015)

    Article  Google Scholar 

  22. Kohr, R.H.: A method for the determination of a differential equation model for simple nonlinear systems. Electron. Comput. IEEE Trans. EC 4, 394–400 (1963)

    Article  Google Scholar 

  23. Leyden, K., Goodwine, B.: Fractional-order system identification for health monitoring. Nonlinear Dyn. 92(3), 1317–1334 (2018). https://doi.org/10.1007/s11071-018-4128-y

    Article  Google Scholar 

  24. Li, Z., Chen, D., Zhu, J., Liu, Y.: Nonlinear dynamics of fractional order duffing system. Chaos Solitons Fractals 81(Part A), 111–116 (2015). https://doi.org/10.1016/j.chaos.2015.09.012

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, J., Wang, Z.J.: Parameter identification for fractional-order chaotic systems using a hybrid stochastic fractal search algorithm. Nonlinear Dyn. 90(2), 1243–1255 (2017). https://doi.org/10.1007/s11071-017-3723-7

    Article  MathSciNet  Google Scholar 

  26. Liu, D.Y., Gibaru, O., Perruquetti, W., Laleg-Kirati, T.M.: Fractional order differentiation by integration and error analysis in noisy environment. IEEE Trans. Autom. Control 60(11), 2945–2960 (2015). https://doi.org/10.1109/TAC.2015.2417852

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, D.Y., Laleg-Kirati, T.M., Gibaru, O., Perruquetti, W.: Fractional order numerical differentiation with B-Spline functions. In: The International Conference on Fractional Signals and Systems 2013. Ghent, Belgium (2013)

  28. Liu, D.Y., Zheng, G., Boutat, D., Liu, H.R.: Non-asymptotic fractional order differentiator for a class of fractional order linear systems. Automatica 78, 61–71 (2017). https://doi.org/10.1016/j.automatica.2016.12.017

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, F., Li, X., Liu, X., Tang, Y.: Parameter identification of fractional-order chaotic system with time delay via multi-selection differential evolution. Syst. Sci. Control Eng. 5(1), 42–48 (2017)

    Article  Google Scholar 

  30. Maachou, A., Malti, R., Melchior, P., Battaglia, J.L., Hay, B.: Thermal system identification using fractional models for high temperature levels around different operating points. Nonlinear Dyn. 70(2), 941–950 (2012). https://doi.org/10.1007/s11071-012-0507-y

    Article  MathSciNet  Google Scholar 

  31. Maachou, A., Malti, R., Melchior, P., Battaglia, J.L., Oustaloup, A., Hay, B.: Nonlinear thermal system identification using fractional volterra series. Control Eng. Practice 29, 50–60 (2014)

    Article  Google Scholar 

  32. Malti, R., Sabatier, J., Akay, H.: Thermal modeling and identification of an aluminum rod using fractional calculus. IFAC Proc. Vol. 42(10), 958–963 (2009). https://doi.org/10.3182/20090706-3-FR-2004.00159. 15th IFAC Symposium on System Identification

    Article  Google Scholar 

  33. Mani, A.K., Narayanan, M.D., Sen, M.: Parametric identification of fractional-order nonlinear systems. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4238-6

    Article  MATH  Google Scholar 

  34. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)

    Book  Google Scholar 

  35. Nise, N.: Control systems engineering, 6th edn. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  36. Petras, I.: Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)

    Book  Google Scholar 

  37. Raja, M., Chaudhary, N.: Adaptive strategies for parameter estimation of Box–Jenkins systems. IET Signal Process. 8(12), 968–980 (2014)

    Article  Google Scholar 

  38. Sheng, H., Chen, Y., Qiu, T.: Fractional Processes and Fractional-order Signal Processing: Techniques and Applications. Springer, Berlin (2012)

    Book  Google Scholar 

  39. Sierociuk, D., Dzielinski, A.: Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comput. Sci. 16(1), 129 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Simpkins, A.: System identification: Theory for the user, 2nd edition (ljung, l.; 1999) [on the shelf]. IEEE Robotics Automation Magazine 19(2), 95–96 (2012). https://doi.org/10.1109/MRA.2012.2192817

    Article  Google Scholar 

  41. Soltan, A., Radwan, A., Soliman, A.M.: Butterworth passive filter in the fractional-order. In: International Conference on Microelectronics, pp. 1–5. IEEE (2011)

  42. Soltan, A., Radwan, A., Soliman, A.M.: Fractional order filter with two fractional elements of dependant orders. Microelectron. J. 43(11), 818–827 (2012)

    Article  Google Scholar 

  43. Tang, Y., Zhang, X., Hua, C., Li, L., Yang, Y.: Parameter identification of commensurate fractional-order chaotic system via differential evolution. Phys. Lett. A 376(4), 457–464 (2012)

    Article  Google Scholar 

  44. Tepljakov, A., Petlenkov, E., Belikov, J.: Fomcon: Fractional-order modeling and control toolbox for matlab. In: Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems—MIXDES 2011, pp. 684–689 (2011)

  45. Tsang, K., Billings, S.: Identification of continuous time nonlinear systems using delayed state variable filters. Int. J. Control 60(2), 159–180 (1994)

    Article  MathSciNet  Google Scholar 

  46. Verhulst, F.: Nonlinear differential equations and dynamical systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  47. Victor, S., Malti, R., Garnier, H., Oustaloup, A.: Parameter and differentiation order estimation in fractional models. Automatica 49(4), 926–935 (2013). https://doi.org/10.1016/j.automatica.2013.01.026

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, L., Gawthrop, P.: On the estimation of continuous time transfer functions. Int. J. Control 74(9), 889–904 (2001). https://doi.org/10.1080/00207170110037894

    Article  MathSciNet  MATH  Google Scholar 

  49. Welty, J.R., Wicks, C.E., Rorrer, G., Wilson, R.E.: Fundamentals of momentum, heat, and mass transfer. Wiley, Hoboken (2009)

    Google Scholar 

  50. Wiener, D., SPINA, J.: Sinusoidal Analysis and Modelling of weakly Non-linear Circuits. Van Nostrand Reinhold, New York (1980)

    Google Scholar 

  51. Winder, S.: Analog and Digital Filter Design. Newnes, Burlington (2002)

    Google Scholar 

  52. Young, P.C.: Recursive Estimation and Time-series Analysis: An Introduction for the Student and Practitioner. Springer, Berlin (2011)

    Book  Google Scholar 

  53. Zhang, B., Billings, S.: Identification of continuous-time nonlinear systems: the nonlinear difference equation with moving average noise (ndema) framework. Mech. Syst. Signal Process. 60, 810–835 (2015)

    Article  Google Scholar 

  54. Zhao, Y., Baleanu, D., Cattani, C., Cheng, D., Yang, X.: Maxwell’s equations on cantor sets: a local fractional approach. Adv. High Energy Phys. 2013, 6 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Shen.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allafi, W., Zajic, I., Uddin, K. et al. Design of delayed fractional state variable filter for parameter estimation of fractional nonlinear models. Nonlinear Dyn 94, 2697–2713 (2018). https://doi.org/10.1007/s11071-018-4519-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4519-0

Keywords

Navigation