Skip to main content
Log in

Bi-parametric topology of subharmonics of an asymmetric bubble oscillator at high dissipation rate

The exoskeleton, its internal structure and the missing fine substructure

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The subharmonic topology of a nonlinear, asymmetric bubble oscillator (Keller–Miksis equation) in glycerine is investigated in the parameter space of its external excitation (frequency and pressure amplitude). The bi-parametric investigation revealed that the exoskeleton of the topology can be described as the composition of U-shaped subharmonics of periodic orbits. The fine substructure (higher-order ultra-subharmonic resonances) usually appearing via the well-known period n-tupling phenomenon is completely missing due to the high dissipation rate of the viscous liquid. Moreover, a complex internal structure of the subharmonics has been found, which are composed by interconnected bifurcation blocks (in a zig-zag pattern) each describing the skeleton of a shrimp-shaped domain. The employed numerical techniques are the combination of an in-house initial value problem solver written in C++/CUDA C to harness the high processing power of professional graphics cards, and the boundary value problem solver AUTO to compute periodic orbits directly regardless of their stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Strogatz, S.H.: Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering, 2nd edn. Westview Press, Boulder (2014)

    MATH  Google Scholar 

  2. Epstein, I.R., Showalter, K.: Nonlinear chemical dynamics: oscillations, patterns, and chaos. J. Phys. Chem. 100(31), 13132 (1996)

    Google Scholar 

  3. Sagues, F., Epstein, I.R.: Nonlinear chemical dynamics. Dalton Trans. 7, 1201 (2003)

    Google Scholar 

  4. Roberto, M., da Silva, E.C., Caldas, I.L., Viana, R.L.: Magnetic trapping caused by resonant perturbations in tokamaks with reversed magnetic shear. Phys. Plasmas 11(1), 214 (2004)

    Google Scholar 

  5. Ecke, R.E.: Chaos, patterns, coherent structures, and turbulence: reflections on nonlinear science. Chaos 25(9), 097605 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Parlitz, U., Lauterborn, W.: Superstructure in the bifurcation set of the Duffing equation \(\ddot{x} + d \dot{x} + x + x^3 = f cos(\omega t)\). Phys. Lett. A 107(8), 351 (1985)

    MathSciNet  Google Scholar 

  7. Parlitz, U., Lauterborn, W.: A Resonances and torsion numbers of driven dissipative nonlinear oscillators. Z. Naturforsch. A 41(4), 605 (1986)

    MathSciNet  Google Scholar 

  8. Parlitz, U., Lauterborn, W.: Period-doubling cascades and devil’s staircases of the driven van der Pol oscillator. Phys. Rev. A 36(3), 1428 (1987)

    Google Scholar 

  9. Parlitz, U., Scheffczyk, C., Kurz, T., Lauterborn, W.: On modeling driven oscillators by maps. Int. J. Bifurcat. Chaos 1(1), 261 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Kozłowski, J., Parlitz, U., Lauterborn, W.: Bifurcation analysis of two coupled periodically driven Duffing oscillators. Phys. Rev. E 51(3), 1861 (1995)

    Google Scholar 

  11. Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19(1), 25 (1978)

    MathSciNet  MATH  Google Scholar 

  12. Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7(1–3), 181 (1983)

    MathSciNet  MATH  Google Scholar 

  13. Goswami, B.K.: Self-similarity in the bifurcation structure involving period tripling, and a suggested generalization to period n-tupling. Phys. Lett. A 245(1–2), 97 (1998)

    Google Scholar 

  14. Gilmore, R.: Topological analysis of chaotic dynamical systems. Rev. Mod. Phys. 70(4), 1455 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Rocha, R., Medrano-T, R.O.: Stability analysis and mapping of multiple dynamics of Chua’s circuit in full four-parameter spaces. Int. J. Bifurcat. Chaos 25(13), 1530037 (2015)

    MathSciNet  MATH  Google Scholar 

  16. da Costa, D.R., Hansen, M., Guarise, G., Medrano-T, R.O., Leonel, E.D.: The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps. Phys. Lett. A 380(18), 1610 (2016)

    MathSciNet  Google Scholar 

  17. Prants, F.G., Rech, P.C.: Complex dynamics of a three-dimensional continuous-time autonomous system. Math. Comput. Simul. 136, 132 (2017)

    MathSciNet  Google Scholar 

  18. Field, R.J., Gallas, J.A., Schuldberg, D.: Periodic and chaotic psychological stress variations as predicted by a social support buffered response mode. Commun. Nonlinear. Sci. Numer. Simul. 49, 135 (2017)

    Google Scholar 

  19. Doedel, E.J., Oldeman, B.E., Champneys, A.R., Dercole, F., Fairgrieve, T.F., Kuznetsov, Y.A., Paffenroth, R., Sandstede, B., Wang, X., Zhang, C.: AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations. Concordia University, Montreal (2012)

    Google Scholar 

  20. Kurz, T., Lauterborn, W.: Bifurcation structure of the Toda oscillator. Phys. Rev. A 37, 1029 (1988)

    MathSciNet  Google Scholar 

  21. Knop, W., Lauterborn, W.: Bifurcation structure of the classical Morse oscillator. J. Chem. Phys. 93(6), 3950 (1990)

    MathSciNet  Google Scholar 

  22. Scheffczyk, C., Parlitz, U., Kurz, T., Knop, W., Lauterborn, W.: Comparison of bifurcation structures of driven dissipative nonlinear oscillators. Phys. Rev. A 43(12), 6495 (1991)

    MathSciNet  Google Scholar 

  23. Parlitz, U.: Common dynamical features of periodically driven strictly dissipative oscillators. Int. J. Bifurcat. Chaos 3(3), 703 (1993)

    MathSciNet  MATH  Google Scholar 

  24. Parlitz, U., Englisch, V., Scheffczyk, C., Lauterborn, W.: Bifurcation structure of bubble oscillators. J. Acoust. Soc. Am. 88(2), 1061 (1990)

    MathSciNet  Google Scholar 

  25. Gilmore, R., McCallum, J.W.L.: Structure in the bifurcation diagram of the Duffing oscillator. Phys. Rev. E 51, 935 (1995)

    MathSciNet  Google Scholar 

  26. Goldberg, L., Tresser, C.: Rotation orbits and the Farey tree. Ergod. Theory Dyn. Syst. 16(5), 1011 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Englisch, V., Parlitz, U., Lauterborn, W.: Comparison of winding-number sequences for symmetric and asymmetric oscillatory systems. Phys. Rev. E 92(2), 022907 (2015)

    MathSciNet  Google Scholar 

  28. Bonatto, C., Gallas, J.A.C.: Accumulation horizons and period adding in optically injected semiconductor lasers. Phys. Rev. E 75(5), 055204 (2007)

    Google Scholar 

  29. Bonatto, C., Gallas, J.A.C.: Accumulation boundaries: codimension-two accumulation of accumulations in phase diagrams of semiconductor lasers, electric circuits, atmospheric and chemical oscillators. Philos. T. Roy. Soc. A 366(1865), 505 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Bonatto, C., Gallas, J.A.C., Ueda, Y.: Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator. Phys. Rev. E 77(2), 026217 (2008)

    Google Scholar 

  31. Bonatto, C., Gallas, J.A.C.: Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. Phys. Rev. Lett. 101(5), 054101 (2008)

    Google Scholar 

  32. Lauterborn, W., Kurz, T., Mettin, R., Koch, P., Kröninger, D., Schanz, D.: Acoustic cavitation and bubble dynamics. Arch. Acoust. 33(4), 609 (2008)

    Google Scholar 

  33. Freire, J.G., Field, R.J., Gallas, J.A.C.: Relative abundance and structure of chaotic behavior: the nonpolynomial Belousov–Zhabotinsky reaction kinetics. J. Chem. Phys. 131(4), 044105 (2009)

    Google Scholar 

  34. Medeiros, E.S., Medrano-T, R.O., Caldas, I.L., de Souza, S.L.T.: Torsion-adding and asymptotic winding number for periodic window sequences. Phys. Lett. A 377(8), 628 (2013)

    MathSciNet  Google Scholar 

  35. de Souza, S.L.T., Lima, A.A., Caldas, I.L., Medrano-T, R.O., Guimara̋es-Filho, Z.O.: Self-similarities of periodic structures for a discrete model of a two-gene system. Phys. Lett. A 376(15), 1290 (2012)

    MATH  Google Scholar 

  36. Celestino, A., Manchein, C., Albuquerque, H.A., Beims, M.W.: Stable structures in parameter space and optimal ratchet transport. Commun. Nonlinear Sci. Numer. Simul. 19(1), 139 (2014)

    Google Scholar 

  37. Francke, R.E., Pöschel, T., Gallas, J.A.C.: Zig-zag networks of self-excited periodic oscillations in a tunnel diode and a fiber-ring laser. Phys. Rev. E 87(4), 042907 (2013)

    Google Scholar 

  38. Niemeyer, K.E., Sung, C.J.: Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs. J. Comput. Phys. 256, 854 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Lauterborn, W., Parlitz, U.: Methods of chaos physics and their application to acoustics. J. Acoust. Soc. Am. 84(6), 1975 (1988)

    MathSciNet  Google Scholar 

  40. Englisch, V., Lauterborn, W.: Regular window structure of a double-well Duffing oscillator. Phys. Rev. A 44(2), 916 (1991)

    MathSciNet  Google Scholar 

  41. Wang, C.S., Kao, Y.H., Huang, J.C., Gou, Y.S.: Potential dependence of the bifurcation structure in generalized Duffing oscillators. Phys. Rev. A 45(6), 3471 (1992)

    Google Scholar 

  42. Kim, S.Y.: Bifurcation structure of the double-well Duffing oscillator. Int. J. Mod. Phys. B 14(17), 1801 (2000)

    Google Scholar 

  43. Hegedűs, F., Hős, C., Kullmann, L.: Stable period 1, 2 and 3 structures of the harmonically excited Rayleigh–Plesset equation applying low ambient pressure. IMA J. Appl. Math. 78(6), 1179 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Hegedűs, F.: Stable bubble oscillations beyond Blake’s critical threshold. Ultrasonics 54(4), 1113 (2014)

    Google Scholar 

  45. Hegedűs, F.: Topological analysis of the periodic structures in a harmonically driven bubble oscillator near Blake’s critical threshold: infinite sequence of two-sided Farey ordering trees. Phys. Lett. A 380(9–10), 1012 (2016)

    Google Scholar 

  46. Fujiwara, T., Shima, A.: Nonlinear oscillations of bubbles in compressible hydraulic oils. J. Acoust. Soc. Am. 68(5), 1502 (1980)

    MATH  Google Scholar 

  47. Klapcsik, K., Hegedűs, F.: The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble. Chaos Solitons Fract. 104(17), 198 (2017)

    Google Scholar 

  48. Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540(4), 167 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Prosperetti, A., Lezzi, A.: Bubble dynamics in a compressible liquid. Part 1. First-order theory. J. Fluid Mech. 168, 457 (1986)

    MATH  Google Scholar 

  50. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  51. Lauterborn, W., Kurz, T.: Physics of bubble oscillations. Rep. Prog. Phys. 73(10), 106501 (2010)

    Google Scholar 

  52. Zhang, Y., Du, X., Xian, H., Wu, Y.: Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency. Ultrason. Sonochem. 23, 16 (2015)

    Google Scholar 

  53. Zhang, Y., Billson, D., Li, S.: Influences of pressure amplitudes and frequencies of dual-frequency acoustic excitation on the mass transfer across interfaces of gas bubbles. Int. J. Heat Mass Transf. 66, 16 (2015)

    Google Scholar 

  54. Zhang, Y., Li, S.: Acoustical scattering cross section of gas bubbles under dual-frequency acoustic excitation. Ultrason. Sonochem. 26, 437 (2015)

    Google Scholar 

  55. Zhang, Y., Zhang, Y., Li, S.: The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation. Ultrason. Sonochem. 29, 129 (2016)

    Google Scholar 

  56. Zhang, Y., Zhang, Y., Li, S.: Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation. Ultrason. Sonochem. 35, 431 (2017)

    Google Scholar 

  57. Prosperetti, A.: Nonlinear oscillations of gas bubbles in liquids: steady-state solutions. J. Acoust. Soc. Am. 56(3), 878 (1974)

    Google Scholar 

  58. Prosperetti, A.: Nonlinear oscillations of gas bubbles in liquids. Transient solutions and the connection between subharmonic signal and cavitation. J. Acoust. Soc. Am. 57(4), 810 (1975)

    Google Scholar 

  59. Esche, R.: Untersuchung der Schwingungskavitation in Flüssigkeiten. Acta Acust. United Acust. 2(6), 208 (1952)

    Google Scholar 

  60. Lauterborn, W., Cramer, E.: Subharmonic route to chaos observed in acoustics. Phys. Rev. Lett. 47(20), 1445 (1981)

    Google Scholar 

  61. Lauterborn, W., Koch, A.: Holographic observation of period-doubled and chaotic bubble oscillations in acoustic cavitation. Phys. Rev. A 35(4), 1974 (1987)

    Google Scholar 

  62. Behnia, S., Mobadersani, F., Yahyavi, M., Rezavand, A.: Chaotic behavior of gas bubble in non-Newtonian fluid: a numerical study. Nonlinear Dyn. 74(3), 559 (2013)

    MathSciNet  Google Scholar 

  63. Behnia, S., Sojahrood, A.J., Soltanpoor, W., Jahanbakhsh, O.: Nonlinear transitions of a spherical cavitation bubble. Chaos Solitons Fract. 41(2), 818 (2009)

    Google Scholar 

  64. Behnia, S., Sojahrood, A.J., Soltanpoor, W., Jahanbakhsh, O.: Suppressing chaotic oscillations of a spherical cavitation bubble through applying a periodic perturbation. Ultrason. Sonochem. 16(4), 502 (2009)

    Google Scholar 

  65. Behnia, S., Sojahrood, A.J., Soltanpoor, W., Sarkhosh, L.: Towards classification of the bifurcation structure of a spherical cavitation bubble. Ultrasonics 49(8), 605 (2009)

    Google Scholar 

  66. Behnia, S., Zahir, H., Yahyavi, M., Barzegar, A., Mobadersani, F.: Observations on the dynamics of bubble cluster in an ultrasonic field. Nonlinear Dyn. 72(3), 561 (2013)

    MathSciNet  Google Scholar 

  67. Hegedűs, F., Koch, S., Garen, W., Pandula, Z., Paál, G., Kullmann, L., Teubner, U.: The effect of high viscosity on compressible and incompressible Rayleigh–Plesset-type bubble models. Int. J. Heat Fluid Flow 42, 200 (2013)

    Google Scholar 

  68. Hegedűs, F., Kullmann, L.: Basins of attraction in a harmonically excited spherical bubble model. Period. Polytech. Mech. Eng. 56(2), 125 (2012)

    Google Scholar 

  69. Lauterborn, W.: Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J. Acoust. Soc. Am. 59(2), 283 (1976)

    MathSciNet  Google Scholar 

  70. Varga, R., Paál, G.: Numerical investigation of the strength of collapse of a harmonically excited bubble. Chaos Solitons Fract. 76, 56 (2015)

    MathSciNet  Google Scholar 

  71. Keller, J.B., Miksis, M.: Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68(2), 628 (1980)

    MATH  Google Scholar 

  72. Haynes, W.M.: CRC Handbook of Chemistry and Physics, 95th edn. CRC Press, Boca Raton (2015). (Internet Version)

    Google Scholar 

  73. Hegedűs, F., Klapcsik, K.: The effect of high viscosity on the collapse-like chaotic and regular periodic oscillations of a harmonically excited gas bubble. Ultrason. Sonochem. 27, 153 (2015)

    Google Scholar 

  74. Fyrillas, M.M., Szeri, A.J.: Dissolution or growth of soluble spherical oscillating bubbles. J. Fluid Mech. 277, 381 (1994)

    MATH  Google Scholar 

  75. Hős, C.J., Champneys, A.R., Paul, K., McNeely, M.: Dynamic behaviour of direct spring loaded pressure relief valves in gas service: II reduced order modelling. J. Loss Prevent. Proc. 36, 1 (2015)

    Google Scholar 

  76. Medeiros, E.S., de Souza, S.L.T., Medrano-T, R.O., Caldas, I.L.: Periodic window arising in the parameter space of an impact oscillator. Phys. Lett. A 374(26), 2628 (2010)

    MATH  Google Scholar 

  77. Medeiros, E.S., de Souza, S.L.T., Medrano-T, R.O., Caldas, I.L.: Replicate periodic windows in the parameter space of driven oscillators. Chaos Solitons Fract. 44(11), 982 (2011)

    Google Scholar 

  78. Brison, O.J., Gallas, J.A.: What is the effective impact of the explosive orbital growth in discrete-time one-dimensional polynomial dynamical systems? Physica A 410, 313 (2014)

    MathSciNet  MATH  Google Scholar 

  79. Gallas, J.A.C.: The structure of infinite periodic and chaotic hub cascades in phase diagrams of simple autonomous flows. Int. J. Bifurcat. Chaos 20(2), 197 (2010)

    MathSciNet  MATH  Google Scholar 

  80. Freire, J.G., Gallas, J.A.C.: Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback. Phys. Rev. E 82(3), 037202 (2010)

    Google Scholar 

  81. Freire, J.G., Gallas, J.A.: Cyclic organization of stable periodic and chaotic pulsations in Hartley’s oscillator. Chaos Solitons Fract. 59(7), 129 (2014)

    Google Scholar 

  82. Hegedűs, F., Werner, L., Parlitz, U., Mettin, R.: Non-feedback technique to directly control multistability in nonlinear oscillators by dual-frequency driving. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4358-z

    Article  Google Scholar 

  83. Lu, X., Prosperetti, A., Toegel, R., Lohse, D.: Harmonic enhancement of single-bubble sonoluminescence. Phys. Rev. E 67, 056310 (2003)

    Google Scholar 

  84. Parlitz, U., Junge, L.: Synchronization of chaotic systems. In: 1999 European control conference (ECC), pp. 4637–4642 (1999)

  85. Goswami, B.K.: Newhouse sinks in the self-similar bifurcation structure. Phys. Rev. E 62, 2068 (2000)

    Google Scholar 

  86. Goswami, B.K., Basu, S.: Self-similar organization of Gavrilov–Silnikov–Newhouse sinks. Phys. Rev. E 65, 036210 (2002)

    MathSciNet  Google Scholar 

  87. Goswami, B.K., Basu, S.: Transforming complex multistability to controlled monostability. Phys. Rev. E 66, 026214 (2002)

    Google Scholar 

  88. Goswami, B.K.: Multiple attractors in the self-similar bifurcation-structure. Riv. Nuovo Cimento 28, 115 (2005)

    Google Scholar 

  89. Sojahrood, A.J., Kolios, M.C.: Classification of the nonlinear dynamics and bifurcation structure of ultrasound contrast agents excited at higher multiples of their resonance frequency. Phys. Lett. A 376(33), 2222 (2012)

    Google Scholar 

  90. Sojahrood, A.J., Falou, O., Earl, R., Karshafian, R., Kolios, M.C.: Influence of the pressure-dependent resonance frequency on the bifurcation structure and backscattered pressure of ultrasound contrast agents: a numerical investigation. Nonlinear Dyn. 80(1–2), 889 (2015)

    Google Scholar 

Download references

Acknowledgements

This paper was supported by the ÚNKP-17-3-I New National Excellence Program of the Ministry of Human Capacities, by the János Bolyai Research Scholarship of Hungarian Academy of Sciences and by the Higher Education Excellence Program of the Ministry of Human Capacities in the frame of Water science & Disaster Prevention research area of Budapest University of Technology and Economics (BME FIKP-VÍZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kálmán Klapcsik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klapcsik, K., Varga, R. & Hegedűs, F. Bi-parametric topology of subharmonics of an asymmetric bubble oscillator at high dissipation rate. Nonlinear Dyn 94, 2373–2389 (2018). https://doi.org/10.1007/s11071-018-4497-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4497-2

Keywords

Navigation