Skip to main content

Advertisement

Log in

Nonlinear dynamics and performance enhancement of asymmetric potential bistable energy harvesters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Bistable system exhibiting complex dynamic behavior has been viewed as an efficient method to overcome the issue of linear energy harvester only performing well near the resonant frequency. Moreover, performance enhancement strategies of bistable energy harvesters have been extensively discussed mainly for systems with perfectly symmetric potentials. Due to the presence of imperfections as a result of non-uniform manufacturing of the harvesters, eccentricity of the buckling or magnetic force and uneven gravity, the dynamic characteristics and performance enhancement of asymmetric potential energy harvesting remain an open issue. Therefore, this paper investigates the influence mechanism and performance enhancement of a cantilever-based bistable energy harvesting system with asymmetric potentials. Bifurcation diagrams of the dimensionless electromechanical equations are employed to discover the effect of asymmetric potentials on the output response. Based on the numerical results, a performance enhancement method is proposed by compensating the asymmetric potentials with an appropriate bias of the system to decrease the negative impact of asymmetric potentials on bistable energy harvesting. The optimum bias angle is derived and numerical simulations under constant and sweep frequency excitations demonstrate that the performance of the asymmetric potential bistable energy harvesters is enhanced in a certain bias angle range around the optimum value. Two bistable energy harvesters with different asymmetric potential energy functions are investigated in the experiments and results verify the effectiveness of the proposed method for improving the energy harvesting performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)

    Article  Google Scholar 

  2. Pellegrini, S.P., Tolou, N., Schenk, M., Herder, J.L.: Bistable vibration energy harvesters: A review. J. Intell. Mater. Syst. Struct. 24(11), 1303–1312 (2012)

    Article  Google Scholar 

  3. Twiefel, J., Westermann, H.: Survey on broadband techniques for vibration energy harvesting. J. Intell. Mater. Syst. Struct. 24(11), 1291–1302 (2013)

    Article  Google Scholar 

  4. He, X.Q., Rafiee, M., Mareishi, S.: Nonlinear dynamics of piezoelectric nanocomposite energy harvesters under parametric resonance. Nonlinear Dyn. 79(3), 1863–1880 (2014)

    Article  MATH  Google Scholar 

  5. Li, H., Qin, W.: Dynamics and coherence resonance of a laminated piezoelectric beam for energy harvesting. Nonlinear Dyn. 81(4), 1751–1757 (2015)

    Article  MathSciNet  Google Scholar 

  6. Daqaq, M.F.: Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330(11), 2554–2564 (2011)

    Article  Google Scholar 

  7. Daqaq, M.F., Masana, R., Erturk, A., Dane Quinn, D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66(4), 040801 (2014)

    Article  Google Scholar 

  8. Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., Green, T.C.: Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96(9), 1457–1486 (2008)

    Article  Google Scholar 

  9. Neiss, S., Goldschmidtboeing, F., Kroener, M., Woias, P.: Analytical model for nonlinear piezoelectric energy harvesting devices. Smart Mater. Struct. 23(10), 105031 (2014)

    Article  Google Scholar 

  10. Zhang, Y., Tang, L., Liu, K.: Piezoelectric energy harvesting with a nonlinear energy sink. J. Intell. Mater. Syst. Struct. 28(3), 307–322 (2016)

    Article  Google Scholar 

  11. Arrieta, A.F., Hagedorn, P., Erturk, A., Inman, D.J.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97(10), 104102 (2010)

    Article  Google Scholar 

  12. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. (2009). https://doi.org/10.1103/PhysRevLett.102.080601

  13. Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330(10), 2339–2353 (2011)

    Article  Google Scholar 

  14. Cao, J., Wang, W., Zhou, S., Inman, D.J., Lin, J.: Nonlinear time-varying potential bistable energy harvesting from human motion. Appl. Phys. Lett. 107(14), 143904 (2015)

    Article  Google Scholar 

  15. Kim, P., Seok, J.: A multi-stable energy harvester: dynamic modeling and bifurcation analysis. J. Sound Vib. 333(21), 5525–5547 (2014)

    Article  Google Scholar 

  16. Kumar, K.A., Ali, S.F., Arockiarajan, A.: Magneto-elastic oscillator: modeling and analysis with nonlinear magnetic interaction. J. Sound Vib. 393, 265–284 (2017)

    Article  Google Scholar 

  17. Stanton, S.C., McGehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95(17), 174103 (2009)

    Article  Google Scholar 

  18. Zhou, S., Cao, J., Lin, J.: Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dyn. 86(3), 1599–1611 (2016)

    Article  Google Scholar 

  19. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94(25), 254102 (2009)

    Article  Google Scholar 

  20. Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69(3), 1063–1079 (2012)

    Article  MathSciNet  Google Scholar 

  21. Zhou, S., Cao, J., Inman, D.J., Lin, J., Liu, S., Wang, Z.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)

    Article  Google Scholar 

  22. Cao, J.Y., Zhou, S.X., Wang, W., Lin, J.: Influence of potential well depth on nonlinear tristable energy harvesting. Appl. Phys. Lett. 106(17), 173903 (2015)

    Article  Google Scholar 

  23. Kim, P., Seok, J.: Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester. Mech. Mach. Theory 94, 41–63 (2015)

    Article  Google Scholar 

  24. Kim, P., Son, D., Seok, J.: Triple-well potential with a uniform depth: advantageous aspects in designing a multi-stable energy harvester. Appl. Phys. Lett. 108(24), 243902 (2016)

    Article  Google Scholar 

  25. Panyam, M., Daqaq, M.F.: Characterizing the effective bandwidth of tri-stable energy harvesters. J. Sound Vib. 386, 336–358 (2017)

    Article  Google Scholar 

  26. Li, H., Qin, W., Lan, C., Deng, W., Zhou, Z.: Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Mater. Struct. 25(1), 015001 (2016)

    Article  Google Scholar 

  27. Zhou, Z., Qin, W., Zhu, P.: Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester. Sens. Actuators A 243, 151–158 (2016)

    Article  Google Scholar 

  28. Zhou, Z., Qin, W., Zhu, P.: A broadband quad-stable energy harvester and its advantages over bi-stable harvester: simulation and experiment verification. Mech. Syst. Signal Process. 84, 158–168 (2017)

    Article  Google Scholar 

  29. Harne, R.L., Wang, K.W.: Prospects for nonlinear energy harvesting systems designed near the elastic stability limit when driven by colored noise. J. Vib. Acoust. 136(2), 021009 (2013)

    Article  Google Scholar 

  30. Halvorsen, E.: Fundamental issues in nonlinear wideband-vibration energy harvesting. Phys. Rev. E. (2013). https://doi.org/10.1103/PhysRevE.87.042129

    Article  Google Scholar 

  31. He, Q.F., Daqaq, M.F.: Influence of potential function asymmetries on the performance of nonlinear energy harvesters under white noise. J. Sound Vib. 333(15), 3479–3489 (2014)

    Article  Google Scholar 

  32. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, New York (2008)

    Google Scholar 

  33. Cao, J., Zhou, S., Inman, D.J., Chen, Y.: Chaos in the fractionally damped broadband piezoelectric energy generator. Nonlinear Dyn. 80(4), 1705–1719 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study has been supported by the National Natural Science Foundation of China (Grant No. 51575426, 51421004, 51611530547); Novel Energy Materials, Engineering Science and Integrated Systems (NEMESIS) (ERC Grant No. 320963); Fundamental Research Funds for the Central Universities of China (Grant No. xjj2016002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyi Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Cao, J., Bowen, C.R. et al. Nonlinear dynamics and performance enhancement of asymmetric potential bistable energy harvesters. Nonlinear Dyn 94, 1183–1194 (2018). https://doi.org/10.1007/s11071-018-4417-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4417-5

Keywords

Navigation