Skip to main content
Log in

Dynamics of a physical SBT memristor-based Wien-bridge circuit

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a physical SBT memristor-based Wien-bridge chaotic circuit is proposed. The equilibrium point and stability of the chaotic circuit are analyzed theoretically. The dynamical characteristics of circuit system with the variation in the initial state and the circuit element parameters are investigated by means of Lyapunov exponents, bifurcation diagrams and phase portraits. The results show that the circuit system exhibits complex dynamic behaviors, such as stable point, period, and chaos. Specifically, the system can generate hidden chaotic attractors and coexisting chaotic attractors. All the results provide an important theoretical basis for the next physical implementation of the chaotic circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Kia, B., Mobley, K., Ditto, W.L.: An integrated circuit design for a dynamics-based reconfigurable logic block. IEEE Trans. Circuits II PP(99), 1-1 (2016)

    Google Scholar 

  2. https://news.ncsu.edu/2016/09/kia-mooreslaw/. Accessed 20 Sep 2016

  3. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  4. Itoh, M., Chua, L.O.: Memristor cellular automata and memristor discrete-time cellular neural networks. Int. J. Bifurc. Chaos 19, 3605–3656 (2009)

    Article  MATH  Google Scholar 

  5. Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20, 1335–1350 (2010)

    Article  MATH  Google Scholar 

  6. Peng, G., Min, F.: Multistability analysis, circuit implementations and application in image encryption of a novel memristive chaotic circuit. Nonlinear Dyn. 90(3), 1607–1625 (2017)

    Article  Google Scholar 

  7. Wang, C., Liu, X., Xia, H.: Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N+1-scroll chaotic attractors system. Chaos 27, 033114 (2017)

    Article  MATH  Google Scholar 

  8. Kim, B.K., Nguyen, V.H., Kim, N.T., et al.: Experimental study on chaotic behaviors of a Chuas circuit based on variable memristor. IEICE Electron. Expr. 12, 20150457 (2015)

    Article  Google Scholar 

  9. Li, Y., Huang, X., Guo, M.: The generation, analysis, and circuit implementation of a new memristor based chaotic system. Math. Probl. Eng. 2013, 398306 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Ma, J., Chen, Z., Wang, Z., et al.: A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium. Nonlinear Dyn. 81(3), 1275–1288 (2015)

    Article  MATH  Google Scholar 

  11. Wen, S., Huang, T., Yu, X., et al.: Sliding-mode control of memristive Chua’s systems via the event-based method. IEEE Trans. Circuits II 64(1), 81–85 (2017)

    Google Scholar 

  12. Zhou, L., Wang, C., Zhou, L.: Generating hyperchaotic multi-wing attractor in a 4D memristive circuit. Nonlinear Dyn. 85, 2653–2663 (2016)

    Article  Google Scholar 

  13. Danca, M.F., Tang, W.K.S., Chen, G.: Suppressing chaos in a simplest autonomous memristor-based circuit of fractional order by periodic impulses. Chaos Solitons Fractals 84, 31–40 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Q., Wang, X., Wan, H., et al.: A circuit design for multi-inputs stateful OR gate. Phys. Lett. A 380, 3081–3085 (2016)

    Article  MathSciNet  Google Scholar 

  15. Dadras, S., Momeni, H.R.: A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors. Phys. Lett. A 373(40), 3637–3642 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kengne, J., Njitacke, T.Z., Kamdoum, T.V., et al.: Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit. Chaos 25(10), 103126 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dadras, S., Momeni, H.R.: Four-scroll hyperchaos and four-scroll chaos evolved from a novel 4D nonlinear smooth autonomous system. Phys. Lett. A 374(11), 1368–1373 (2010)

    Article  MATH  Google Scholar 

  18. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  19. Ren, G., Zhou, P., Ma, J., et al.: Dynamical response of electrical activities in digital neuron circuit driven by autapse. Int. J. Bifurc. Chaos 27(12), 1750187 (2017)

    Article  MathSciNet  Google Scholar 

  20. Ren, G., Xu, Y., Wang, C.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88(2), 893–901 (2017)

    Article  Google Scholar 

  21. Zhang, G., Ma, J., Alsaedi, A., et al.: Dynamical behavior and application in Josephson junction coupled by memristor. Appl. Math. Comput. 321, 290–299 (2018)

    MathSciNet  Google Scholar 

  22. Xu, Y., Jia, Y., Ma, J., et al.: Synchronization between neurons coupled by memristor. Chaos Solitons Fractals 104, 435–442 (2017)

    Article  Google Scholar 

  23. Wu, F., Wang, C., Jin, W., Ma, J.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)

    Article  MathSciNet  Google Scholar 

  24. Wen, S., Zeng, Z., Huang, T., et al.: Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators. IEEE Trans. Fuzzy Syst. 22(6), 1704–1713 (2014)

    Article  Google Scholar 

  25. Driscoll, T., Kim, H.T., Chae, B.G., et al.: Phase-transition driven memristive system. Appl. Phys. Lett. 95, 043503 (2009)

    Article  Google Scholar 

  26. Hasegawa, T., Ohno, T., Terabe, K., et al.: Learning abilities achieved by a single solid-state atomic switch. Adv. Mater. 22, 1831–1834 (2010)

    Article  Google Scholar 

  27. Chang, T., Jo, S.H., Kim, K.H., et al.: Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A Mater. 102, 857–863 (2011)

    Article  Google Scholar 

  28. Wang, Z.Q., Xu, H.Y., Li, X.H., Yu, H., Liu, Y.C., Zhu, X.J.: Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 22(13), 2759–2765 (2012)

    Article  Google Scholar 

  29. Li, Y., Zhong, Y., Xu, L., Zhang, J., Xu, X., Sun, H., Miao, X.: Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep. 3, 1619 (2013)

    Article  Google Scholar 

  30. Li, Y.X., Dou, G.: Towards the implementation of memristor: a study of the electric properties of Ba\(_{0.77}\)Sr\(_{0.23}\)TiO\(_{3}\) material. Int. J. Bifurc. Chaos 23(12), 1350204 (2013)

    Article  Google Scholar 

  31. Wang, Z., Joshi, S., Savelev, S.E., et al.: Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017)

    Article  Google Scholar 

  32. Dou, G., Yu, Y., Guo, M., et al.: Memristive behavior based on Ba-doped SrTiO\(_{3}\) films. Chin. Phys. Lett. 34, 038502 (2017)

    Article  Google Scholar 

  33. Zhang, Y.M., Dou, G., Sun, Z., Guo, M., Li, Y.X.: Establishment of physical and mathematical models for Sr\(_{0.95}\)Ba\(_{0.05}\)TiO\(_{3}\) memristor. Int. J. Bifurc. Chaos 27(9), 1750148 (2017)

    Article  Google Scholar 

  34. Kuznetsov, N.V., Leonov, G.A., Mokaev, T.N., et al.: Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4054-z

    Google Scholar 

  35. Kuznetsov, N.V., Alexeeva, T.A., Leonov, G.A.: Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations. Nonlinear Dyn. 85(1), 195–201 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Leonov, G.A., Kuznetsov, N.V.: Time-varying linearization and the Perron effects. Int. J. Bifurc. Chaos 17(4), 1079–1107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear Sci. 28, 166–174 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We appreciate editor and reviewers for their helpful and constructive comments on our manuscript. Some pieces of comments even enlighten us for future researches. We appreciate Dr. Fang Yuan for valuable discussion. This work was supported by the National Natural Science Foundation of China (Nos. 61703247, 61703246, 61473177) the China Postdoctoral Science Foundation (No. 2015M582114), the Shandong Postdoctoral Special Foundation (No. 201502017),and the Qingdao Science and Technology Plan Project(No. 15-9-1-39-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Dou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Gao, Z., Xue, Y. et al. Dynamics of a physical SBT memristor-based Wien-bridge circuit. Nonlinear Dyn 93, 1681–1693 (2018). https://doi.org/10.1007/s11071-018-4284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4284-0

Keywords

Navigation