Skip to main content
Log in

Exact and numerical solutions of time-fractional advection–diffusion equation with a nonlinear source term by means of the Lie symmetries

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the authors analyze a time-fractional advection–diffusion equation, involving the Riemann–Liouville derivative, with a nonlinear source term. They determine the Lie symmetries and reduce the original fractional partial differential equation to a fractional ordinary differential equation. The authors solve the reduced fractional equation adopting the Caputo’s definition of derivatives of non-integer order in such a way the initial conditions have a physical meaning. The reduced fractional ordinary differential equation is approximated by the implicit second order backward differentiation formula. The analytical solutions, in terms of the Mittag-Leffler function for the linear fractional equation and numerical solutions, obtained by the finite difference method for the nonlinear fractional equation, are used to evaluate the solutions of the original advection–diffusion equation. Finally, comparisons between numerical and exact solutions and the error estimates show that the proposed procedure has a high convergence precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  2. Samko, S., Kilbas, A.A., Marichev, O.: Fractional Integrals and Derivatives. Taylor and Francis, London (1993)

    MATH  Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  4. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  5. Daftardar-Geji, V., Jafari, H.: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301, 508–518 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, J.F., Chu, Y.M.: Solution to the linear fractional differential equation using Adomian decomposition method. Math. Probl. Eng. (2011). https://doi.org/10.1155/2011/587068

  7. Garra, R., Polito, F.: Analytic solutions of fractional differential equations by operational methods. Appl. Math. Comput. 218, 10642–10646 (2012). https://doi.org/10.1016/j.amc.2012.04.028

    MathSciNet  MATH  Google Scholar 

  8. Garra, R.: Analytic solution of a class of fractional differential equations with variable coefficients by operatorial methods. Commun. Nonlinear Sci. Numer. Simul. 17, 1549–1554 (2012). https://doi.org/10.1016/j.cnsns.2011.08.041

    Article  MathSciNet  MATH  Google Scholar 

  9. Hilfer, R., Luchko, Y., Tomovski, Z.: Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives. Fract. Cal. Appl. Anal. 12(3), 299–318 (2009)

    MathSciNet  MATH  Google Scholar 

  10. He, J.H.: A coupling method of a homotopy technique and a perturbation technique for nonlinear problems. Int. J. NonLinear Mech. 35, 37–43 (2000)

    Article  MATH  Google Scholar 

  11. He, J.H.: New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B 20, 2561–2668 (2006)

    Article  Google Scholar 

  12. Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365, 345–350 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bagley, R.L., Torvik, J.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983)

    Article  MATH  Google Scholar 

  14. Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelastically damped structures. J. Guidance Control Dyn. 14, 304–311 (1991)

    Article  Google Scholar 

  15. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  16. He, J.H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167, 57–68 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gepreel, K.A.: The homotopy perturbation method applied to the nonlinear fractional Kolmogorov–Petrovskii–Piskunov equations. Appl. Math. Lett. 24, 1428–1434 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  19. Fazio, R., Jannelli, A.: A finite difference method on quasi-uniform mesh for time-fractional advection–diffusion equations with source term. Submitted to Numerical Methods for Partial Differential Equations (2017) Arxiv (n. 2135925)

  20. Ruggieri, M., Speciale, M.P.: Approximate analysis of a nonlinear dissipative model. Acta Applicandae Mathematicae 132(1), 549–559 (2014). https://doi.org/10.1007/s10440-014-9924-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Ruggieri, M., Speciale, M.P.: Lie group analysis of a wave equation with a small nonlinear dissipation. Ricerche Mat. 66(1), 27–34 (2017). https://doi.org/10.1007/s11587-016-0282-z

    Article  MathSciNet  MATH  Google Scholar 

  22. Ruggieri, M., Speciale, M.P.: Approximate symmetries in viscoelasticity. Theor. Math. Phys. 189, 1500–1508 (2016). https://doi.org/10.1134/S0040577916100093

    Article  MathSciNet  MATH  Google Scholar 

  23. Ruggieri, M., Speciale, M.P.: Conservation laws by means of a new mixed method. Int. J. Non Linear Mech. 95, 327–332 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.07.010

    Article  MATH  Google Scholar 

  24. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Continuous transformation groups of fractional dfferential equations. Vestn. USATU 9, 125–35 (2007)

    Google Scholar 

  25. Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227(1), 81–97 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Symmetry properties of fractional diffusion equations. Physica Scripta T136, 014016 (2009)

    Article  Google Scholar 

  27. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Group-Invariant solutions of Fractional Differential Equations. Nonlinear Science and Complexity, pp. 51–59. Springer, Dordrecht (2011)

    MATH  Google Scholar 

  28. Leo, R.A., Sicuro, G., Tempesta, P.: A theorem on the existence of symmetries of fractional PDEs. Comptes Rendus Mathematique 352(3), 219–222 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, G.W., Liu, X.Q., Zhang, Y.Y.: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2321–2326 (2013). https://doi.org/10.1016/j.cnsns.2012.11.032

    Article  MathSciNet  MATH  Google Scholar 

  30. Prakash, P., Sahadevan, R.: Lie symmetry analysis and exact solution of certain fractional ordinary differential equations. Nonlinear Dyn. (2017). https://doi.org/10.1007/s11071-017-3455-8

  31. Pan, M., Zheng, L., Liu, C., Liu, F.: Symmetry analysis and conservation laws to the space-fractional Prandtl equation. Nonlinear Dyn. 90, 1343 (2017). https://doi.org/10.1007/s11071-017-3730-8

    Article  MathSciNet  Google Scholar 

  32. Jafari, H., Kadkhoda, N., Baleanu, D.: Fractional Lie group method of the time-fractional Boussinesq equation. Nonlinear Dyn. 81(3), 1569–1574 (2015). https://doi.org/10.1007/s11071-015-2091-4

    Article  MathSciNet  MATH  Google Scholar 

  33. El Kinani, E.H., Ouhadan, A.: Lie symmetry analysis of some time fractional partial differential equations, SDEA-II. Int. J. Mod. Phys. Conf. Ser. 38, 1560075 (2015). https://doi.org/10.1142/S2010194515600757

    Article  Google Scholar 

  34. Vu, K.T., Jefferson, G.F., Carminati, J.: Finding generalized symmetries of differential equations using the MAPLE package DESOLVII. Comput. Phys. Commun. 183, 1044–1054 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jefferson, G.F., Carminati, J.: ASP: automated symbolic computation of approximate symmetries of differential equations. Comput. Phys. Commun. 184, 1045–1063 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jannelli, A., Ruggieri, M., Speciale, M.P.: Analytical and numerical solutions of fractional type advection–diffusion equation. AIP Conf. Proc. 1863(1), 530005 (2017). https://doi.org/10.1063/1.4992675

    Article  Google Scholar 

  37. Diethelm, K., Freed, A.D.: The FracPECE subroutine for the numerical solution of differential equations of fractional order. In: Heinzel, S., Plesser, T. (eds.) Forschung und Wissenschaftliches Rechnen 1998, pp. 57–71. Gessellschaft fur Wissenschaftliche Datenverarbeitung, Gottingen (1999)

    Google Scholar 

  38. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36(1), 31–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lubich, C.: Fractional linear multistep methods for Abel–Volterra integral equations of the second kind. Math. Comput. 45, 463–469 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lubich, C.: Discretized fractional calculus. SIAM J. Numer. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. Garrappa, R.: Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math. Comput. Simul. 110, 96–112 (2015)

    Article  MathSciNet  Google Scholar 

  43. Jannelli, A., Fazio, R., Ambrosi, D.: A 3D mathematical model for the prediction of mucilage dynamics. Comput. Fluids 32, 47–57 (2003)

    Article  MATH  Google Scholar 

  44. Fazio, R., Jannelli, A.: Second order numerical operator splitting for 3D advection–diffusion–reaction models. In: Kreiss G., et al. (eds.) Numerical Mathematics and Advanced Applications 2009: Proceedings of ENUMATH 2009. pp. 317–324. Springer, Berlin Heidelberg (2010)

  45. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheologica Acta 45(5), 765–771 (2006)

    Article  Google Scholar 

  46. Valipour, M., Montazar, A.A.: An evaluation of SWDC and WinSRFR models to optimize of infiltration parameters in furrow irrigation. Am. J. Sci. Res. 69, 128–142 (2012)

    Google Scholar 

  47. Valipour, M.: Increasing irrigation efficiency by management strategies: cutback and surge irrigation. ARPN J. Agric. Biol. Sci. 8, 1 (2013)

    Article  Google Scholar 

  48. Valipour, M.: Application of new mass transfer formulae for computation of evapotranspiration. J. Appl. Water Eng. Res. 2(1), 33–46 (2014)

    Article  MathSciNet  Google Scholar 

  49. Valipour, M.: Study of different climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations. Arch. Agron. Soil Sci. 61, 5 (2015)

    Google Scholar 

  50. Valipour, M., Sefidkouhi, M.A.G., Raeini-Sarjaz, M.: Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agriculture 6, 53 (2016). https://doi.org/10.3390/agriculture6040053

    Article  Google Scholar 

  51. Valipour, M.: How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? Agriculture 6, 53 (2016). https://doi.org/10.3390/agriculture6040053

    Article  Google Scholar 

  52. Stojanovic, V., Nedic, N., Prsic, D., Dubonjic, L.: Optimal experiment design for identification of ARX models with constrained output in non-Gaussian noise. Appl. Math. Model. 40, 6676–6689 (2016)

    Article  MathSciNet  Google Scholar 

  53. Stojanovic, V., Nedic, N.: Identification of time-varying OE models in presence of non-Gaussian noise: application to pneumatic servo drives. Int. J. Robust Nonlinear Control 26, 3974–3995 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Stojanovic, V., Nedic, N.: Joint state and parameter robust estimation of stochastic nonlinear systems. Int. J. Robust Nonlinear Control 26, 3058–3074 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Stojanovic, V., Nedic, N.: Robust identification of OE model with constrained output using optimal input design. J. Frankl. Inst. 353, 576–593 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A. J. acknowledges G.N.C.S. of I.N.d.A.M. and M.R. & M.P.S. acknowledge G.N.F.M. of I.N.d.A.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Paola Speciale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jannelli, A., Ruggieri, M. & Speciale, M.P. Exact and numerical solutions of time-fractional advection–diffusion equation with a nonlinear source term by means of the Lie symmetries. Nonlinear Dyn 92, 543–555 (2018). https://doi.org/10.1007/s11071-018-4074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4074-8

Keywords

Navigation