Skip to main content
Log in

Subharmonic Melnikov theory for degenerate resonance systems and its application

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article explores the subharmonic orbits of a four-dimensional degenerate resonance non-autonomous system. The well-known subharmonic Melnikov method is improved in this paper. Suppose the unperturbed system is a two-degree-of-freedom decoupled Hamiltonian system and possesses a family of periodic orbits. The important issue is the persistence of the periodic orbits after periodic perturbations. In order to solve this problem, we propose a four-dimensional subharmonic Melnikov function based on periodic transformations and Poincaré map. Then, a main theorem, which can be used to check the existence of the periodic orbits for the four-dimensional degenerate resonance system, is presented and proved by using the implicit function theorem. In order to verify the validity and applicability of the improved subharmonic Melnikov method, we apply it to investigate the subharmonic orbits of a honeycomb sandwich plate. The theoretical result shows that the subharmonic orbits of period 2T can exist under certain conditions. Numerical simulations are carried out to verify the analytical predictions. It is found that the subharmonic orbits for the honeycomb sandwich plate do exist based on the results of numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Melnikov, V.K.: On the stability of the center for time periodic perturbation. Trans. Mosc. Math. Soci. 12, 1–56 (1963)

    MathSciNet  Google Scholar 

  2. Gundler, J.: The existence of homoclinic orbits and the method of Melnikov for systems in \(R^{n}\). SIAM J. Math. Anal. 16, 907–931 (1985)

    Article  MathSciNet  Google Scholar 

  3. Du, Z.D., Zhang, W.N.: Melnikov method for homoclinic bifurcation in nonlinear impact oscillators. Comput. Math. Appl. 50, 445–458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kaper, T.J., Kovacic, G.: Multi-bump orbits homoclinic to resonance bands. Trans. Am. Math. Soc. 348, 3835–3887 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Younesian, D., Norouzi, H.: Chaos prediction in nonlinear viscoelastic plates subjected to subsonic flow and external load using extended Melnikov’s method. Nonlinear Dyn. 84, 1163–1179 (2016)

    Article  MathSciNet  Google Scholar 

  6. Zhang, W., Yao, M.H., Zhang, J.H.: Using extended Melnikov method to study multi-pulse global bifurcations and chaos of a cantilever beam. J. Sound Vib. 319, 541–569 (2009)

    Article  Google Scholar 

  7. Battelli, F., Feckan, M.: Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems. Phys. D 241, 1962–1975 (2012)

    Article  MathSciNet  Google Scholar 

  8. Awrejcewicz, J., Holicke, M.: Smooth and Non-smooth High Dimensional Chaos and the Melnikov-Type Methods. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  9. Li, S.B., Shen, C., Zhang, W., Hao, Y.X.: The Melnikov method of heteroclinic orbits for a class of planar hybrid piecewise-smooth systems and application. Nonlinear Dyn. 85, 1091–1104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1982)

    MATH  Google Scholar 

  11. Wiggins, S.: Introduction to Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    Book  MATH  Google Scholar 

  12. Veerman, P., Holmes, P.: The existence of arbitrarily many distinct periodic orbits in a two degree of freedom Hamiltonian system. Phys. D 14, 177–192 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yagasaki, K.: The Melnikov theory for subharmonics and their bifurcations in forced oscillations. SIAM J. Appl. Math. 56, 1720–1765 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhou, L.Q., Chen, F.Q.: Subharmonic bifurcations and chaos for the traveling wave solutions of the compound Kdv–Burgers equation with external and parametrical excitations. Appl. Math. Comput. 243, 105–113 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Gentile, G., Bartuccelli, M.V., Deane, J.H.B.: Bifurcation curves of subharmonic solutions and Melnikov theory under degeneracies. Rev. Math. Phys. 19, 307–348 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao, Q.J., Han, Y.W., Liang, T.W., Wiercigroch, M., Piskarev, S.: Multiple buckling and codimension-three bifurcation phenomena of a nonlinear oscillator. Int. J. Bifurc. Chaos 24, 1430005 (2014)

    Article  MATH  Google Scholar 

  17. Yagasaki, K.: Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete Contin. Dyn. Syst. 33, 2189–2209 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Corsi, L., Gentile, G.: Melnikov theory to all orders and Puiseux series for subharmonic solutions. J. Math. Phys. 49, 112701 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bonnin, M.: Harmonic balance, Melnikov method and nonlinear oscillators under resonant perturbation. Int. J. Circuit Theory Appl. 36, 247–274 (2008)

    Article  MATH  Google Scholar 

  20. Christie, J.R., Gopalsamy, K., Panizza, M.P.: Subharmonic orbits in an anharmonic oscillator. J. Aust. Math. Soc. Ser. B Appl. Math. 38, 307–315 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, W., Zhang, J.H., Yao, M.H.: The extended Melnikov method for non-autonomous nonlinear dynamical systems and application to multi-pulse chaotic dynamics of a buckled thin plate. Nonlinear Anal. Real World Appl. 11, 1442–1457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, W., Zhang, J.H., Yao, M.H., Yao, Z.G.: Multi-pulse chaotic dynamics of non-autonomous nonlinear system for a laminated composite piezoelectric rectangular plate. Acta Mech. 211, 23–47 (2010)

    Article  MATH  Google Scholar 

  23. Hao, W.L., Zhang, W., Yao, M.H.: Multipulse chaotic dynamics of six-dimensional nonautonomous nonlinear system for a honeycomb sandwich plate. Int. J. Bifurc. Chaos 24, 1450138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ruzzene, M.: Vibration and sound radiation of sandwich beams with honeycomb truss core. J. Sound Vib. 277, 741–763 (2004)

    Article  Google Scholar 

  25. Nilsson, E., Nilsson, A.C.: Prediction and measurement of some dynamic properties of sandwich structures with honeycomb and foam cores. J. Sound Vib. 251, 409–430 (2002)

    Article  Google Scholar 

  26. Foo, C.C., Seah, L.K., Chai, G.B.: Low-velocity impact failure of aluminium honeycomb sandwich panels. Compos. Struct. 85, 20–28 (2008)

    Article  Google Scholar 

  27. Chen, J.E., Zhang, W., Liu, J., Sun, M.: Dynamic properties of truss core sandwich plate with tetrahedral core. Compos. Struct. 134, 869–882 (2015)

    Article  Google Scholar 

  28. Li, Y.Q., Zhu, D.W.: Free flexural vibration analysis of symmetric rectangular honeycomb panels using the improved Reddy’s third-order plate theory. Compos. Struct. 88, 33–39 (2009)

    Article  Google Scholar 

  29. Li, Y.Q., Zhu, D.W.: Geometrically nonlinear free vibrations of the symmetric rectangular honeycomb sandwich panels with simply supported boundaries. Compos. Struct. 92, 1110–1119 (2010)

    Article  Google Scholar 

  30. Sun, J.: Nonlinear dynamics of honeycomb sandwich plate. Master Thesis, Beijing University of Technology (2008)

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China through grant Nos. 11402165 and 11402170.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Zhang, W., Chen, J.E. et al. Subharmonic Melnikov theory for degenerate resonance systems and its application. Nonlinear Dyn 89, 1173–1186 (2017). https://doi.org/10.1007/s11071-017-3508-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3508-z

Keywords

Navigation