Skip to main content
Log in

A new electrostatic load model for initially curved carbon nanotube resonators: pull-in characteristics and nonlinear resonant behaviour

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new nonlinear electrostatic load model for initially curved clamped–clamped carbon nanotube (CNT) resonators is developed in this study. In particular, first a 3D finite element analysis is performed in order to obtain the electrostatic force distribution on a clamped–clamped CNT resonator (with and without initial curvature). A nonlinear model for the electrostatic load is then developed based on the 3D finite element analysis results. Based on the newly developed electrostatic load model, the nonlinear equations of motion of the initially curved CNT resonator are derived employing Hamilton’s principle together with the modified couple stress theory. Moreover, the Kelvin–Voigt viscoelastic model is employed to model the energy dissipation. The new nonlinear model of the system, consisting of two strongly nonlinear coupled partial differential equations, is discretized into a set of nonlinear ordinary differential equations via Galerkin’s technique, and solved employing the pseudo-arclength continuation method. The numerical results are obtained for both static and dynamic cases, with special focus on the static pull-in behaviour and on the effects of the newly developed electrostatic load model, viscoelasticity, initial curvature, and length-scale parameter on the nonlinear resonant response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Chowdhury, R., Adhikari, S., Mitchell, J.: Vibrating carbon nanotube based bio-sensors. Phys. E 42(2), 104–109 (2009). doi:10.1016/j.physe.2009.09.007

    Article  Google Scholar 

  2. Eichler, A., Moser, J., Chaste, J., Zdrojek, M., Wilson-Rae, I., Bachtold, A.: Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 6(6), 339–342 (2011)

    Article  Google Scholar 

  3. Farokhi, H., Paidoussis, M.P., Misra, A.K.: A new nonlinear model for analyzing the behaviour of carbon nanotube-based resonators. J. Sound Vib. (2016). doi:10.1016/j.jsv.2016.05.008

    Google Scholar 

  4. Hajnayeb, A., Khadem, S.E.: Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation. J. Sound Vib. 331(10), 2443–2456 (2012). doi:10.1016/j.jsv.2012.01.008

    Article  Google Scholar 

  5. Harik, V.: Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods. Solid State Commun. 120(7–8), 331–335 (2001). doi:10.1016/S0038-1098(01)00383-0

    Article  Google Scholar 

  6. Hayt, W., Buck, J.: Engineering Electromagnetics. McGraw-Hill, New York (2012)

    Google Scholar 

  7. Hüttel, A.K., Steele, G.A., Witkamp, B., Poot, M., Kouwenhoven, L.P., van der Zant, H.S.J.: Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9(7), 2547–2552 (2009). doi:10.1021/nl900612h

    Article  Google Scholar 

  8. Kang, J.W., Kwon, O.K.: A molecular dynamics simulation study on resonance frequencies comparison of tunable carbon-nanotube resonators. Appl. Surf. Sci. 258(6), 2014–2016 (2012). doi:10.1016/j.apsusc.2011.05.026

    Article  Google Scholar 

  9. Ke, C., Espinosa, H.D.: Numerical analysis of nanotube-based nems devicespart. I: Electrostatic charge distribution on multiwalled nanotubes. J. Appl. Mech. 72(5), 721–725 (2005)

    Article  MATH  Google Scholar 

  10. Kim, S.B., Kim, J.H.: Quality factors for the nano-mechanical tubes with thermoelastic damping and initial stress. J. Sound Vib. 330(7), 1393–1402 (2011). doi:10.1016/j.jsv.2010.10.015

    Article  Google Scholar 

  11. Lee, J.H., Kang, J.W.: Vibrational analysis of cantilevered carbon-nanotube resonator with different linear density of attached mass: molecular dynamics simulations. J. Comput. Theor. Nanosci. 10(8), 1863–1867 (2013). doi:10.1166/jctn.2013.3140

    Article  Google Scholar 

  12. Li, C., Chou, T.W.: Mass detection using carbon nanotube-based nanomechanical resonators. Appl. Phys. Lett. 84(25), 5246–5248 (2004). doi:10.1063/1.1764933

    Article  Google Scholar 

  13. Natsuki, T., Matsuyama, N., Ni, Q.Q.: Vibration analysis of carbon nanotube-based resonator using nonlocal elasticity theory. Appl. Phys. A 120(4), 1309–1313 (2015). doi:10.1007/s00339-015-9398-3

    Article  Google Scholar 

  14. Natsuki, T., Matsuyama, N., Shi, J.X., Ni, Q.Q.: Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile loads. Appl. Phys. A 116(3), 1001–1007 (2014). doi:10.1007/s00339-014-8289-3

    Article  Google Scholar 

  15. Ouakad, H.M., Younis, M.I.: Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation. J. Sound Vib. 330(13), 3182–3195 (2011). doi:10.1016/j.jsv.2010.12.029

  16. Ouakad, H.M., Younis, M.I.: Dynamic response of slacked single-walled carbon nanotube resonators. Nonlinear Dyn. 67(2), 1419–1436 (2012). doi:10.1007/s11071-011-0078-3

    Article  MathSciNet  Google Scholar 

  17. Poot, M., Witkamp, B., Otte, M.A., van der Zant, H.S.J.: Modelling suspended carbon nanotube resonators. Phys. Status Solidi B 244(11), 4252–4256 (2007). doi:10.1002/pssb.200776130

    Article  Google Scholar 

  18. Prabhakar, S., Païdoussis, M.P., Vengallatore, S.: Analysis of frequency shifts due to thermoelastic coupling in flexural-mode micromechanical and nanomechanical resonators. J. Sound Vib. 323(1–2), 385–396 (2009). doi:10.1016/j.jsv.2008.12.010

    Article  Google Scholar 

  19. Roman, C., Helbling, T., Hierold, C.: Single-walled carbon nanotube sensor concepts. In: Springer Handbook of Nanotechnology, pp. 403–425. Springer, Berlin (2010). doi:10.1007/978-3-642-02525-9_14

  20. Ruzziconi, L., Younis, M.I., Lenci, S.: Multistability in an electrically actuated carbon nanotube: a dynamical integrity perspective. Nonlinear Dyn. 74(3), 533–549 (2013). doi:10.1007/s11071-013-0986-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Souayeh, S., Kacem, N.: Computational models for large amplitude nonlinear vibrations of electrostatically actuated carbon nanotube-based mass sensors. Sens. Actuators A Phys. 208, 10–20 (2014). doi:10.1016/j.sna.2013.12.015

    Article  Google Scholar 

  22. Wu, D.H., Chien, W.T., Chen, C.S., Chen, H.H.: Resonant frequency analysis of fixed-free single-walled carbon nanotube-based mass sensor. Sens. Actuators A Phys. 126(1), 117–121 (2006). doi:10.1016/j.sna.2005.10.005

    Article  Google Scholar 

  23. Xu, T., Younis, M.I.: Nonlinear dynamics of carbon nanotubes under large electrostatic force. J. Comput. Nonlinear Dyn. 11(2), 021009 (2016)

    Article  Google Scholar 

  24. Yang, F., Chong, A., Lam, D., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002). doi:10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  25. Zang, X., Zhou, Q., Chang, J., Liu, Y., Lin, L.: Graphene and carbon nanotube (CNT) in mems/nems applications. Microelectron. Eng. 132, 192–206 (2015). doi:10.1016/j.mee.2014.10.023

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec—Nature et technologies (FRQNT) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Païdoussis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farokhi, H., Misra, A.K. & Païdoussis, M.P. A new electrostatic load model for initially curved carbon nanotube resonators: pull-in characteristics and nonlinear resonant behaviour. Nonlinear Dyn 88, 1187–1211 (2017). https://doi.org/10.1007/s11071-016-3304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3304-1

Keywords

Navigation