Abstract
Hidden attractors have received considerable interest in physics, mechanics and other dynamical areas recently. This paper introduces a novel autonomous system with hidden attractor. In particular, there exists no-equilibrium point in this system. Although the new system is simple with six terms, it exhibits complex behavior such as chaos and multistability. In addition, the offset boosting of a variable is achieved by adding a single controlled constant. Dynamical properties of the no-equilibrium system have been discovered by using nonlinear dynamical tools as well as an electronic implementation.












Similar content being viewed by others
References
Leonov, G.A., Kuznetsov, N.V., Kuznetsova, O.A., Seledzhi, S.M., Vagaitsev, V.I.: Hidden oscillations in dynamical systems. Trans. Syst. Control 6, 54–67 (2011)
Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)
Bragin, V.O., Vagaitsev, V.I., Kuznetsov, N.V., Leonov, G.A.: Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits. J. Comput. Syst. Sci. Int. 50, 511–543 (2011)
Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Phys. D 241, 1482–1486 (2012)
Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillation in Hilbert–Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurcat. Chaos 23, 1330002 (2013)
Kapitaniak, T., Leonov, G.A.: Multistability: uncovering hidden attractors. Eur. Phys. J. Spec. Top. 224, 1405–1408 (2005)
Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N., Leonov, G., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)
Jafari, S., Sportt, J.C., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 224, 1469–1476 (2015)
Brezetskyi, S., Dudkowski, D., Kapitaniak, T.: Rare and hidden attractors in Van der Pol-Duffing oscillators. Eur. Phys. J. Spec. Top. 224, 1459–1467 (2015)
Leonov, G.A., Kuznetsov, N.V., Kiseleva, M.A., Solovyeva, E.P., Zaretskiy, A.M.: Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 77, 277–288 (2014)
Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224, 1421–1458 (2015)
Zhusubaliyev, Z.T., Mosekilde, E.: Multistability and hidden attractors in a multilevel DC/DC converter. Math. Comput. Simul. 109, 32–45 (2015)
Llibre, J.: Centers: their integrability and relations with the divergence. Appl. Math. Nonlinear Sci. 1, 79–86 (2016)
Li, Q., Zeng, H., Yang, X.-S.: On the hidden twin attractors and bifurcation in the Chua’s circuit. Nonlinear Dyn. 77, 255–266 (2014)
Wei, Z., Yu, P., Zhang, W.: Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system. Nonlinear Dyn. 82, 131–141 (2015)
Wang, Z., Sun, W., Wei, Z., Zhang, S.: Dynamics and delayed feedback control for a 3D jerk system with hidden attractor. Nonlinear Dyn. 82, 577–588 (2015)
Wei, Z., Yang, Q.: Dynamical analysis of a new autonomous 3-D system only with stable equilibria. Nonlinear Anal. Real World Appl. 12, 106–118 (2011)
Molaie, M., Jafari, S., Sprott, J.C., Golpayegani, S.: Simple chaotic flows with one stable equilibrium. Int. J. Bifurcat. Chaos 23, 1350188 (2013)
Wei, Z.: Dynamical behaviors of chaotic systems with no equilibria. Phys. Lett. A 376, 102–108 (2011)
Jafari, S., Sprott, J.C., Golpayegani, S.: Elementary chaotic flows with no equilibria. Phys. Lett. A 377, 699–702 (2013)
Hens, C., Dana, S.K., Feudel, U.: Extreme multistability: attractors manipulation and robustness. Chaos 25, 053112 (2015)
Li, C., Sprott, J.C.: Finding coexisting attractors using amplitude control. Nonlinear Dyn. 78, 2059–2064 (2014)
Leipnik, R.B., Newton, T.A.: Double strange attractors in rigid body motion with linear feedback control. Phys. Lett. A 86, 63–87 (1981)
Masoller, C.: Coexistence of attractors in a laser diode with optical feedback from a large external cavity. Phys. Rev. A 50, 2569–2578 (1994)
Vaithianathan, V., Veijun, J.: Coexistence of four different attractors in a fundamental power system model. IEEE Trans. Circuits Syst. I(46), 405–409 (1999)
Upadhyay, R.K.: Multiple attractors and crisis route to chaos in a model of food-chain. Chaos Solitons Fractals 16, 737–747 (2003)
Cushing, J.M., Henson, S.M., Blackburn, C.C.: Multiple mixed attractors in a competition model. J. Biol. Dyn. 1, 347–362 (2007)
Massoudi, A., Mahjani, M.G., Jafarian, M.: Multiple attractors in Koper–Gaspard model of electrochemical. J. Electroanal. Chem. 647, 74–86 (2010)
Pivka, L., Wu, C.W., Huang, A.: Chua’s oscillator: a compendium of chaotic phenomena. J. Franklin Inst. 331, 705–741 (1994)
Kengne, J., Chedjou, J.C., Fonzin Fozin, T., Kyamakya, K., Kenne, G.: On the analysis of semiconductor diode based chaotic and hyperchaotic chaotic generators—a case study. Nonlinear Dyn. 77, 373–386 (2014)
Kengne, J.: Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators. Int. J. Bifurcat. Chaos 25, 1550052 (2015)
Zeng, Z., Zheng, W.: Multistability of neural networks with time-varying delays and concave-convex characteristic. IEEE Trans. Neural Netw. Learn. Syst. 23, 293–305 (2012)
Zeng, Z., Huang, T., Zheng, W.: Multistability of recurrent networks with time-varying delays and the piecewise linear activation function. IEEE Trans. Neural Netw. 21, 1371–7 (2010)
Chudzik, A., Perlikowski, P., Stefanski, A., Kapitaniak, T.: Multistability and rare attractors in van der Pol-Duffing oscillator. Int. J. Bifurcat. Chaos 21, 1907–1912 (2011)
Sprott, J.C., Wang, X., Chen, G.R.: Coexistence of point, periodic and strange attractors. Int. J. Bifurcat. Chaos 23, 1350093 (2013)
Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurcat. Chaos 24, 1450034 (2014)
Dudkowski, D., Prasad, A., Kapitaniak, T.: Perpetual points and hidden attractors in dynamical systems. Phys. Lett. A 379, 2591–2596 (2015)
Prasad, A.: Existence of perpetual points in nonlinear dynamical systems and its applications. Int. J. Bifurcat. Chaos 25, 1530005 (2015)
Kuznetsov, A.P., Kuznetsov, S.P., Mosekilde, E., Stankevich, N.V.: Co-existing hidden attractors in a radio-physical oscillator. J. Phys. A Math. Theor. 48, 125101 (2015)
Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50, R647 (1994)
Jafari, S., Sprott, J.C.: Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57, 79–84 (2013)
Li, C., Sprott, J.C., Yuan, Z., Li, H.: Constructing chaotic systems with total amplitude control. Int. J. Bifurcat. Chaos 25, 1530025 (2015)
Munmuangsaen, B., Sprott, J.C., Thio, W.J.-C., Buscarino, A., Fortuna, L.: A simple chaotic flow with a continuously adjustable attractor dimension. Int. J. Bifurcat. Chaos 25, 1530036 (2015)
Kengne, J., Chedjou, J.C., Kom, M., Kyamakya, K., Kamdoum Tamba, V.: Regular oscillations, chaos, and multistability in a system of two coupled van der Pol oscillators: numerical and experimental studies. Nonlinear Dyn. 76, 1119–1132 (2014)
Kengne, J., Njitacke, Z.T., Fotsin, H.B.: Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 77, 373–386 (2014)
Ott, E.: Chaos Dyn. Syst. Cambridge University Press, Cambridge (1992)
Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A chaotic circuit based on Hewlett-Packard memristor. Chaos 22, 023136 (2012)
Lü, J., Chen, G.: Generating multiscroll chaotic attractors: theories, methods and applications. Int. J. Bifurcat. Chaos 16, 775–858 (2006)
Wang, L.: 3-scroll and 4-scroll chaotic attractors generated form a new 3-D quadratic autonomous system. Nonlinear Dyn. 56, 453–462 (2009)
Buscarino, A., Fortuna, L., Frasca, M., Sciuto, G.: Design of time-delay chaotic electronic circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1888–1896 (2011)
Banerjee, T., Biswas, D., Sarkar, B.C.: Design and analysis of a first order time-delayed chaotic system. Nonlinear Dyn. 70, 721–734 (2012)
Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: A chaotic path planning generator for autonomous mobile robots. Rob. Auton. Syst. 60, 651–656 (2012)
Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: Image encryption process based on chaotic synchronization phenomena. Signal Process. 93, 1328–1390 (2013)
Khan, M., Shah, T., Gondal, M.A.: An efficient technique for the construction of substitution box with chaotic partial diffirential equation. Nonlinear Dyn. 73, 1795–1801 (2013)
Ma, J., Wu, X.Y., Qin, H.X.: Realization of synchronization between hyperchaotic systems by using a scheme of intermittent linear coupling. Acta Phys. Sin. 62, 170502 (2013)
Ma, J., Wu, X., Chu, R., Zhang, L.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76, 1951–1962 (2014)
Liu, G., Yang, W., Liu, W., Dai, Y.: Designing S-boxes based on -D four-wing autonomous chaotic system. Nonlinear Dyn. 82, 1867–1877 (2015)
Acknowledgments
The authors thank Prof. GuanRong Chen, Department of Electronic Engineering, City University of Hong Kong, for suggesting helpful references. This work has been supported by the Polish National Science Centre, MAESTRO Programme—Project No 2013/08/A/ST8/00/780.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pham, VT., Volos, C., Jafari, S. et al. Coexistence of hidden chaotic attractors in a novel no-equilibrium system. Nonlinear Dyn 87, 2001–2010 (2017). https://doi.org/10.1007/s11071-016-3170-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-016-3170-x