Skip to main content
Log in

Comparative dynamic control for continuously variable transmission with nonlinear uncertainty using blend amend recurrent Gegenbauer-functional-expansions neural network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Because the nonlinear uncertainty of the continuously variable transmission system operated by the synchronous reluctance motor is unknown, control performance obtained for classical linear controller is poor, with comparison to more complex, nonlinear control methods. Due to good learning skill online, a blend amended recurrent Gegenbauer-functional-expansions neural network (NN) control system was developed to return to the nonlinear uncertainties behavior. The blend amended recurrent Gegenbauer-functional-expansions NN control system can fulfill overseer control, amended recurrent Gegenbauer-functional-expansions NN control with an adaptive dharma and recompensed control with a reckoned dharma. In addition, according to the Lyapunov stability theorem, the adaptive dharma in the amended recurrent Gegenbauer-functional-expansions NN and the reckoned dharma of the recompensed controller are established. Furthermore, an altered artificial bee colony optimization yields two varied learning rates for two parameters to find two optimal values, which helped improving convergence. Finally, various comparisons of the experimental results are demonstrated to confirm that the proposed control system can result better control performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xu, L., Yao, J.: A compensated vector control scheme of a synchronous reluctance motor including saturation and iron losses. IEEE Trans. Ind. Appl. 8(6), 1330–1338 (1992)

    Article  Google Scholar 

  2. Betz, R.E., Lagerquist, R., Jovanovic, M., Miller, T.J.E., Middleton, R.H.: Control of synchronous reluctance machines. IEEE Trans. Ind. Appl. 9(6), 1110–1122 (1993)

    Article  Google Scholar 

  3. Srivastava, N., Haque, I.: Transient dynamics of metal V-belt CVT: effects of bandpack slip and friction characteristic. Mech. Mach. Theory 43(4), 457–479 (2008)

    Article  MATH  Google Scholar 

  4. Srivastava, N., Haque, I.: A review on belt and chain continuously variable transmissions (CVT): dynamics and control. Mech. Mach. Theory 44, 19–41 (2009)

    Article  MATH  Google Scholar 

  5. Guzzella, L., Schmid, A.M.: Feedback linearization of spark-ignition engines with continuously variable transmissions. IEEE Trans. Control Syst. Technol. 3, 54–58 (1995)

    Article  Google Scholar 

  6. Kim, W., Vachtsevanos, G.: Fuzzy logic ratio control for a CVT hydraulic module. In: Proceedings of the IEEE Symposium on Intelligent Control, pp. 151–156. Rio (2000)

  7. Sun, G., Wang, D., Li, T., Peng, Z., Wang, H.: Single neural network approximation based adaptive control for a class of uncertain strict-feedback nonlinear systems. Nonlinear Dyn. 72(1), 175–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, H., Chen, B., Lin, C.: Adaptive neural tracking control for a class of perturbed pure-feedback. Nonlinear Dyn. 72, 207–220 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin, C.H., Chen, J.K.: Nonlinear control design of LSM drive system using adaptive modified recurrent Laguerre orthogonal polynomial NN backstepping control. In: Proceedings of the 9th International Conference on Power Electronics and ECCE Asia, pp. 2110–2116. Seoul (2015)

  10. Lin, C.H.: A backstepping control of LSM drive systems using adaptive modified recurrent Laguerre OPNNUO. J. Power Electron. 16(2), 598–609 (2016)

    Article  Google Scholar 

  11. Lin, C.H.: PMSM servo drive for V-belt continuously variable transmission system using hybrid recurrent Chebyshev NN control system. J. Electr. Eng. Technol. 10(1), 408–421 (2015)

    Article  Google Scholar 

  12. Belmehdi, S.: Generalized Gegenbauer orthogonal polynomials. J. Comput. Appl. Math. 133(1–2), 195–205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, C., Zhang, H., Fang, T.: Flutter analysis of an airfoil with bounded random parameters in incompressible flow via Gegenbauer polynomial approximation. Aerosp. Sci. Technol. 11(7–8), 518–526 (2007)

    Article  MATH  Google Scholar 

  14. Zhang, Y., Li, W.: Gegenbauer neural network and its weights-direct determination method. IET Electron. Lett. 45(23), 1184–1185 (2009)

    Article  Google Scholar 

  15. Lin, C.H.: Dynamic control for permanent magnet synchronous generator system using novel modified recurrent wavelet neural network. Nonlinear Dyn. 77(3), 1261–1284 (2014)

    Article  Google Scholar 

  16. Duan, L., Huang, L., Guo, Z.: Stability and almost periodicity for delayed high-order Hopfield neural networks with discontinuous activations. Nonlinear Dyn. 77, 1469–1484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. In: Technical Report TR06, Computer Engineering Department. Erciyes University, Turkey (2005)

  18. Karaboga, D., Akay, B.: A modified artificial bee colony (ABC) algorithm for constrained optimization problems. Appl. Soft Comput. 11(3), 3021–3031 (2011)

    Article  Google Scholar 

  19. Subotic, M.: Artificial bee colony algorithm with multiple onlookers for constrained optimization problems. In: Proceeding of the European Computing Conference, pp. 251–256 (2011)

  20. Mezura-Montes, E., Cetina-Domínguez, O.: Empirical analysis of a modified artificial bee colony for constrained numerical optimization. Appl. Math. Comput. 218(22), 10943–10973 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Stanarevic, N., Tuba, M., Bacanin, N.: Modified artificial bee colony algorithm for constrained problems optimization. Int. J. Math. Models Methods Appl. Sci. 5(3), 644–651 (2011)

  22. Brajevic, I., Tuba, M., Subotic, M.: Performance of the improved artificial bee colony algorithm on standard engineering constrained problems. Int. J. Math. Comput. Simul. 5(2), 135–143 (2011)

    Google Scholar 

  23. Tsai, H.C.: Integrating the artificial bee colony and bees algorithm to face constrained optimization problems. Inf. Sci. 258, 80–93 (2014)

    Article  MathSciNet  Google Scholar 

  24. Tsai, P.W., Pan, J.S., Liao, B.Y., Chu, S.C.: Enhanced artificial bee colony optimization. Int. J. Innov. Comput. Inf. Control 5(12B), 5081–5092 (2009)

    Google Scholar 

  25. Kiran, M.S., Findik, O.: A directed artifical bee colony algorithm. Appl. Soft Comput. 26, 454–462 (2015)

  26. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Ahrari, A., Atai, A.A.: Grenade explosion method: a novel tool for optimization of multimodal functions. Appl. Soft Comput. 10, 1132–1140 (2010)

    Article  Google Scholar 

  28. Mansouri, P., Asady, B., Gupta, N.: The Bisection-artificial bee colony algorithm to solve fixed point problems. Appl. Soft Comput. 26, 143–148 (2015)

    Article  Google Scholar 

  29. Lin, C.H.: Adaptive recurrent Chebyshev neural network control for permanent magnet synchronous motor servo-drive electric scooter. Proc. IMechE I J. Syst. Control Eng. 228(9), 699–714 (2014)

  30. Lin, C.H.: Hybrid recurrent wavelet neural network control of PMSM servo-drive system for electric scooter. Int. J. Control Autom. Syst. 12(1), 77–187 (2014)

    Article  Google Scholar 

  31. Lin, C.H.: Dynamic control of V-belt continuously variable transmission driven electric scooter using hybrid modified recurrent Legendre neural network control system. Nonlinear Dyn. 79(2), 787–808 (2015)

    Article  MATH  Google Scholar 

  32. Lin, C.H.: Composite Recurrent Laguerre orthogonal polynomials neural network dynamic control for continuously variable transmission system using altered particle swarm optimization. Nonlinear Dyn. 81(3), 1219–1245 (2015)

    Article  MATH  Google Scholar 

  33. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. ASME 64, 759–768 (1942)

    Google Scholar 

  34. Astrom, K.J., Hagglund, T.: PID Controller: Theory, Design, and Tuning. Instrument Society of America, Research Triangle Park (1995)

    Google Scholar 

  35. Hagglund, T., Astrom, K.J.: Revisiting the Ziegler–Nichols tuning rules for PI control—part II: the frequency response method. Asian J. Control 6(4), 469–482 (2004)

    Article  Google Scholar 

  36. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  37. Astrom, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, New York (1995)

    Google Scholar 

  38. Lewis, F.L., Campos, J., Selmic, R.: Neuro-fuzzy control of industrial systems with actuator nonlinearities. Frontiers in Applied Mathematics. SIAM Publish Book, Philadelphia (2002). doi:10.1137/1.9780898717563

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hong Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CH. Comparative dynamic control for continuously variable transmission with nonlinear uncertainty using blend amend recurrent Gegenbauer-functional-expansions neural network. Nonlinear Dyn 87, 1467–1493 (2017). https://doi.org/10.1007/s11071-016-3128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3128-z

Keywords

Navigation