Skip to main content
Log in

Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An electronic model of Duffing oscillator with a characteristic memristive nonlinear element is proposed instead of the classical cubic nonlinearity. The memristive Duffing oscillator circuit system is mathematically modeled, and the stability analysis presents the evolution of the proposed system. The dynamical behavior of this circuit is investigated through numerical simulations, statistical analysis, and real-time hardware experiments, which have been carried out under the external periodic force. The chaotic dynamics of the circuit is studied by means of phase diagram. It is found that the proposed circuit system shows complex behaviors, like bifurcations and chaos, three tori, transient chaos, and intermittency for a certain range of circuit parameters. The observed phenomena and scenario are illustrated in detail through experimental and numerical studies of memristive Duffing oscillator circuit. The existence of regular and chaotic behaviors is also verified by using 0–1 test measurements. In addition, the robustness of the signal strength is confirmed through signal-to-noise ratio. The numerically observed results are confirmed from the laboratory experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ho, Y., Huang, G.M., Li, P.: “Nonvolatile memristor memory: device characteristics and design implications, In: Computer-Aided Design-Digest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM International Conference on (IEEE, 2009) pp. 485–490

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: “The missing memristor found”. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  3. Pershin, Y.V., La Fontaine, S., Di Ventra, M.: “Memristive model of amoeba learning”. Phys. Rev. E 80, 021926 (2009)

    Article  Google Scholar 

  4. Pershin, Y.V., Di Ventra, M.: “Spin memristive systems: spin memory effects in semiconductor spintronics”. Phys. Rev. B 78, 113309 (2008)

    Article  Google Scholar 

  5. Pershin, Y.V., Ventra, D.: “Frequency doubling and memory effects in the spin Hall effect”. Phys. Rev. B 79, 153307 (2009)

    Article  Google Scholar 

  6. Tour, J.M., He, T.: “Electronics: the fourth element”. Nature 453, 42–43 (2008)

    Article  Google Scholar 

  7. Mohanty, S.P.: Memristor: from basics to deployment. Potentials IEEE 32, 34–39 (2013)

    Article  Google Scholar 

  8. Chua, L.O.: Memristor-the missing circuit element. Circuit Theory IEEE Trans. 18, 507–519 (1971)

    Article  Google Scholar 

  9. Wang, D., Hu, Z., Yu, X., Yu, J.: “A pwl model of memristor and its application example”, In: Communications, Circuits and Systems, 2009. ICCCAS 2009. International Conference on (IEEE, 2009) pp. 932–934

  10. Corinto, F., Ascoli, A., Gilli, M.: “Nonlinear dynamics of memristor oscillators”. Circuits Syst. I Regul. Pap. IEEE Trans. 58, 1323–1336 (2011)

    Article  MathSciNet  Google Scholar 

  11. Teng, L., Iu, H.H.C., Wang, X., Wang, X.: “Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial”. Nonlinear Dyn. 77, 231–241 (2014)

    Article  Google Scholar 

  12. Wu, H., Bao, B., Liu, Z., Xu, Q., Jiang, P.: “Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator”. Nonlinear Dyn. 83, 893–903 (2016)

  13. Cafagna, D., Grassi, G.: “On the simplest fractional-order memristor-based chaotic system”. Nonlinear Dyn. 70, 1185–1197 (2012)

    Article  MathSciNet  Google Scholar 

  14. Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20, 1335–1350 (2010)

    Article  MATH  Google Scholar 

  15. Muthuswamy, B., Kokate, P.P.: Memristor-based chaotic circuits. IETE Tech. Rev. 26, 417–429 (2009)

    Article  Google Scholar 

  16. Radwan, A.G., Zidan, M.A., Salama, K.N.: “Hp memristor mathematical model for periodic signals and dc”, In: Circuits and Systems (MWSCAS), 2010 53rd IEEE International Midwest Symposium on (IEEE, 2010) pp. 861–864

  17. Prodromakis, T., Peh, B.P., Papavassiliou, C., Toumazou, C.: “A versatile memristor model with nonlinear dopant kinetics”. Electron Devices IEEE Trans. 58, 3099–3105 (2011)

    Article  Google Scholar 

  18. Ahamed, A.I., Lakshmanan, M.: “Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali-Lakshmanan-Chua circuit”. Int. J. Bifurc. Chaos 23, 1350098 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, M., Yu, J., Yu, Q., Li, C., Bao, B.: “A memristive diode bridge-based canonical Chua’s circuit”. Entropy 16, 6464–6476 (2014)

    Article  Google Scholar 

  20. Bo-Cheng, B., Jian-Ping, X., Guo-Hua, Z., Zheng-Hua, M., Ling, Z.: “Chaotic memristive circuit: equivalent circuit realization and dynamical analysis”. Chin. Phys. B 20, 120502 (2011)

    Article  Google Scholar 

  21. Talukdar, A.H.: Nonlinear dynamics of memristor based 2nd and 3rd order oscillators, Ph.D. thesis (2011)

  22. Bo-Cheng, B., Jian-Ping, X., Zhong, L.: Initial state dependent dynamical behaviors in a memristor based chaotic circuit. Ł 27, 70504–070504 (2010)

    Google Scholar 

  23. Chua, L.: Resistance switching memories are memristors. Appl. Phys. A. 102, 765–783 (2011)

    Article  MATH  Google Scholar 

  24. Borghetti, J., Li, Z., Straznicky, J., Li, X., Ohlberg, D.A.A., Wu, W., Stewart, D.R., Williams, R.S.: “A hybrid nanomemristor/transistor logic circuit capable of self-programming”. Proc. Natl. Acad. Sci. 106, 1699–1703 (2009)

    Article  Google Scholar 

  25. Xu, C., Dong, X., Jouppi, N.P., Xie, Y.: “Design implications of memristor-based RRAM cross-point structures”, In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011 (IEEE, 2011) pp. 1–6

  26. Mouttet, B.: “Proposal for memristors in signal processing”, In: Nano-Net (Springer) pp. 11–13 (2009)

  27. Thomas, A.: Memristor-based neural networks. J. Phys. D Appl. Phys. 46, 093001 (2013)

    Article  Google Scholar 

  28. Rajendran, J., Manem, H., Karri, R., Rose, G.S.: “Memristor based programmable threshold logic array”, In: Proceedings of the 2010 IEEE/ACM International Symposium on Nanoscale Architectures (IEEE Press, 2010) pp. 5–10

  29. Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J.M., Hussain, T., Srinivasa, N., Lu, W.: A functional hybrid memristor crossbar-array/cmos system for data storage and neuromorphic applications. Nano Lett. 12, 389–395 (2011)

    Article  Google Scholar 

  30. Itoh, M., Chua, L.O.: “Memristor oscillators”. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, G., Hu, J., Shen, Y.: “New results on synchronization control of delayed memristive neural networks”. Nonlinear Dyn. 81, 1167–1178 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, G., Shen, Y.: “Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control”. Neural Netw. 55, 1–10 (2014)

    Article  MATH  Google Scholar 

  33. Podhaisky, H., Marszalek, W.: “Bifurcations and synchronization of singularly perturbed oscillators: an application case study”. Nonlinear Dyn. 69, 949–959 (2012)

    Article  MathSciNet  Google Scholar 

  34. Marszalek, W., Podhaisky, H.: “2d bifurcations and Newtonian properties of memristive Chua’s circuits”. EPL 113, 10005 (2016)

    Article  Google Scholar 

  35. Megam Ngouonkadi, E.B., Fotsin, H.B., Fotso, P.L.: “Implementing a memristive van der pol oscillator coupled to a linear oscillator: synchronization and application to secure communication”. Phys. Scr. 89, 035201 (2014)

    Article  Google Scholar 

  36. George, D.: “Erzwungene schwingung bei vernderlicher eigenfrequenz und ihre technische bedeutung”, Vieweg (1918)

  37. Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators and Their Behaviour. Wiley, UK (2011)

    Book  MATH  Google Scholar 

  38. Linsay, P.S.: Period doubling and chaotic behavior in a driven anharmonic oscillator. Phys. Rev. Lett. 47, 1349 (1981)

    Article  Google Scholar 

  39. Sabarathinam, S., Thamilmaran, K.: Transient chaos in a globally coupled system of nearly conservative Hamiltonian Duffing oscillators. Chaos Solitons Fractals 73, 129–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Bao, B., Jiang, P., Wu, H., Hu, F.: “Complex transient dynamics in periodically forced memristive chuas circuit”. Nonlinear Dyn. 79, 2333–2343 (2014)

    Article  MathSciNet  Google Scholar 

  41. Wu, W., Chen, Z., Yuan, Z.: “The evolution of a novel four-dimensional autonomous system: among 3-torus, limit cycle, 2-torus, chaos and hyperchaos”. Chaos Solitons Fractals 39, 2340–2356 (2009)

    Article  MathSciNet  Google Scholar 

  42. Prasad, A., Mehra, V., Ramaswamy, R.: “Intermittency route to strange nonchaotic attractors”. Phys. Rev. Lett. 79, 4127 (1997)

    Article  Google Scholar 

  43. Lakshmanan, M., Rajaseekar, S.: Nonlinear Dynamics: Integrability, Chaos and Patterns. Springer, Berlin (2012)

    Google Scholar 

  44. Johnson, D.H.: “Signal-to-noise ratio”. 1,2088, revision 91770 (2006)

  45. Gottwald, G.A., Melbourne, I.: “On the implementation of the 0–1 test for chaos”. SIAM J. Appl. Dyn. Syst. 8, 129–145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Falconer, I., Gottwald, G.A., Melbourne, I., Wormnes, K.: “Application of the 0–1 test for chaos to experimental data”. SIAM J. Appl. Dyn. Syst. 6, 395–402 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lai, Y.-C., Tél, T.: Transient Chaos: Complex Dynamics on Finite Time Scales, vol. 173. Springer, Berlin (2011)

    MATH  Google Scholar 

  48. Lai, Y.-C., Winslow, R.L.: “Geometric properties of the chaotic saddle responsible for supertransients in spatiotemporal chaotic systems”. Phys. Rev. Lett. 74, 5208 (1995)

    Article  Google Scholar 

  49. Bleher, S., Grebogi, C., Ott, E.: “Bifurcation to chaotic scattering”. Phys. D Nonlinear Phenom. 46, 87–121 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  50. Jung, C., Tél, T., Ziemniak, E.: “Application of scattering chaos to particle transport in a hydrodynamical flow”. Chaos Interdiscip. J. Nonlinear Sci. 3, 555–568 (1993)

    Article  Google Scholar 

  51. Dhamala, M., Lai, Y.-C.: “Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology”. Phys. Rev. E 59, 1646 (1999)

    Article  Google Scholar 

  52. Tél, T., Lai, Y.-C.: “Chaotic transients in spatially extended systems”. Phys. Rep. 460, 245–275 (2008)

  53. Bo-Cheng, B., Zhong, L., Jian-Ping, X.: “Transient chaos in smooth memristor oscillator”. Chin. Phys. B 19, 030510 (2010)

    Article  Google Scholar 

  54. Mukouyama, Y., Kawasaki, H., Hara, D., Nakanishi, S.: “Transient chaotic behavior during simultaneous occurrence of two electrochemical oscillations”. J. Solid State Electrochem. 19, 3253–3263 (2015)

  55. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: “Phase synchronization of chaotic oscillators”. Phys. Rev. Lett. 76, 1804 (1996)

    Article  MATH  Google Scholar 

  56. Manneville, P., Pomeau, Y.: “Intermittency and the Lorenz model”. Phys. Lett. A 75, 1–2 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

S.S. acknowledges University Grants Commission (UGC) for the financial assistance through RFSMS scheme. K.T. acknowledges DST, Govt. of India, for the financial support through the Grant No. SB/EMEQ-077/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Thamilmaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabarathinam, S., Volos, C.K. & Thamilmaran, K. Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator. Nonlinear Dyn 87, 37–49 (2017). https://doi.org/10.1007/s11071-016-3022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3022-8

Keywords

Navigation