Skip to main content
Log in

Attitude tracking control for Mars entry vehicle via T-S model with time-varying input delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the attitude tracking control problem of Mars entry vehicle (MEV) with time-varying input delay. The original attitude dynamics of MEV is divided into slow subsystem and fast subsystem. For slow subsystem, the dynamic inversion method is used to generate the angular velocity command. For fast subsystem, a T-S fuzzy model is used to approximate it, and delays-dependent \(H_{\infty }\) attitude tracking control is applied to reduce the effects of delay on attitude dynamics. Specially, a decomposition coefficient of delay integral inequality is introduced in our proposed results, which may further reduce the design algorithm conservatism. Finally, numerical simulations are used to verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu, C., Li, SH., Yang, J., Guo, L.: Mars entry trajectory tracking via constrained multi-model predictive control. In: The 33rd Chinese Control Conference, pp. 7805–7810 (2014)

  2. Christian, J., Wells, G., Lafleur, J., et al.: Extension of traditional entry, descent, and landing technologies for human Mars exploration. J. Spacecr. Rockets 45(1), 130–141 (2008)

    Article  Google Scholar 

  3. Korzum, A.M., et al.: A concept for the entry, descent, and landing of high-mass payloads at Mars. Acta Astronaut. 66(7), 1146–1159 (2010)

    Article  Google Scholar 

  4. Robert, D., Robert, M.: Mars exploration entry, descent, and landing challenges. J. Spacecr. Rockets 44(2), 310–323 (2007)

    Article  Google Scholar 

  5. Mitcheltree, R.A., Moss, J.N., Cheatwood, F.M., Greene, F.A., Braun, R.D.: Aerodynamics of the Mars microprobe entry vehicles. J. Spacecr. Rockets 36(3), 392–398 (1999)

    Article  Google Scholar 

  6. Li, S., Peng, Y.: Command generator tracker based direct model reference adaptive tracking guidance for Mars atmospheric entry. Adv. Space Res. 49(1), 49–63 (2012)

    Article  Google Scholar 

  7. Zhao, Z.H., Jun, Y., Li, S.H., Guo, L.: Composite nonlinear predictive control based on finite-time disturbance observer for Mars entry vehicle. In: The 34th Chinese Control Conference, pp. 5235-5240 (2015)

  8. Xia, Y., Chen, R., Pu, F., Dai, L.: Active disturbance rejection control for drag tracking in Mars entry guidance. Adv. Space Res. 53(5), 853–861 (2014)

    Article  Google Scholar 

  9. Prakash, R., Burkhart, P.D., Chen, A., et al.: Mars Science Laboratory entry, descent, and landing system overview. In: Proceedings of IEEE Aero space Conference, pp. 1–18 (2008)

  10. Brugarolas, P.B., San Martin, A.M., Wong, E.C.: Attitude controller for the atmospheric entry of the Mars Science Laboratory. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii (2008)

  11. Brugarolas, P.B., San Martin, A.M., Wong, E.C.: The RCS attitude controller for the exo-atmospheric and guided entry phases of the Mars Science Laboratory. International Planetary Probe Workshop, Barcelona, Spain, (2010)

  12. He, S.P., Xu, H.L.: Non-fragile finite-time filter design for time-delayed Markovian jumping systems via T-S fuzzy model approach. Nonlinear Dyn. 80(3), 1159–1171 (2015)

    Article  MathSciNet  Google Scholar 

  13. Nagamani, G., Radhika, T.: Dissipativity and passivity analysis of T-S fuzzy neural networks with probabilistic time-varying delays: a quadratic convex combination approach. Nonlinear Dyn. 82(3), 1325–1341 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kim, S.H.: T-S fuzzy control design for a class of nonlinear networked control systems. Nonlinear Dyn. 73(1–2), 17–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Y., Tong, S., Li, T.: Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Trans. Cybern. 45(10), 2299–2308 (2015)

    Article  Google Scholar 

  16. Shen, H., Park, J.H., Wu, Z.G.: Finite-time reliable \(L_2\)-\(L_\infty \)/\(H_\infty \) control for Takagi-Sugeno fuzzy systems with actuator faults. IET Control Theory Appl. 8(9), 688–696 (2014)

    Article  MathSciNet  Google Scholar 

  17. Kim, S.H.: Toward less conservative stability and stabilization conditions for T-S fuzzy systems. Nonlinear Dyn. 75(4), 621–632 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, Z.Y., Lin, C., Chen, B.: New stability and stabilization conditions for T-S fuzzy systems with time delay. Fuzzy Sets Syst. 263, 82–91 (2015)

    Article  MathSciNet  Google Scholar 

  19. Li, Y., Tong, S., Li, T.: Hybrid fuzzy adaptive output feedback control design for MIMO time-varying delays uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. doi:10.1109/TFUZZ.2015.2486811

  20. Sun, F.C., Li, L., Li, H.X., et al.: Neuro-fuzzy dynamic-inversion-based adaptive control for robotic manipulators-discrete time case. IEEE Trans. Ind. Electron. 54(3), 1342C1351 (2007)

    Article  Google Scholar 

  21. Tseng, C.S., Chen, B.S., Uang, H.J.: Fuzzy tracking control design for nonlinear dynamic system via T-S fuzzy model. IEEE Trans. Fuzzy Syst. 9(3), 381–392 (2001)

    Article  Google Scholar 

  22. Jiang, B., Wu, H.N., Guo, L.: Fault tolerant attitude tracking control for Mars Entry Vehicles via Takagi-Sugeno model. In: Navigation and Control Conference, pp. 2299–2304 (2014)

  23. Tang, Z., Park, J.H., Lee, T.H.: Dynamic output-feedback-based \(H_\infty \) design for networked control systems with multipath packet dropouts. Appl. Math. Comput. 275(2), 121–133 (2016)

    MathSciNet  Google Scholar 

  24. Tang, Z., Park, J.H., Lee, T.H., Feng, J.W.: Random adaptive control for cluster synchronization of complex networks with distinct communities. Int. J. Adapt. Control Signal Process. 30(3), 534–549 (2016)

    Article  Google Scholar 

  25. Shi, L., Yang, X.S., Li, Y.C.: Finite-time synchronization of nonidentical chaotic systems with multiple time-varying delays and bounded perturbations. Nonlinear Dyn. 83(1–2), 75–87 (2016)

  26. Shen, H., Zhu, Y., Zhang, L., Park J.H.: Extended dissipative state estimation for markov jump neural networks with unreliable links. IEEE Trans. Neural Netw. Learn. Syst. doi:10.1109/TNNLS.2015.2511196

  27. Lian, K.Y., Liou, J.J.: Output tracking control for fuzzy systems via output feedback design. IEEE Trans. Fuzzy Syst. 14(5), 628–639 (2006)

    Article  Google Scholar 

  28. Liu, Z.X., Yu, J., Xu, D.Y., Peng, D.T.: Wirtinger-type inequality and the stability analysis of delayed lur’e system. Discrete Dyn. Nat. Soc. Article ID 793686 (2013). doi:10.1155/2013/793686

  29. Feng, Z.G., Lam, J.: Stability and dissipativity analysis of distributed delay cellular neural networks. IEEE Trans. Neural Netw. 22(6), 976–981 (2011)

    Article  MathSciNet  Google Scholar 

  30. Li, M.M., Luo, B., Wu, H.N., Guo, L.: Mars entry guidance law design with neural network based HJB approach. In: The 32nd Chinese Control Conference, pp. 5077–5082 (2013)

Download references

Acknowledgments

This work is supported by National Nature Science Foundation under Grant: 61573189, 61573190; Nature Science Foundation of Jiangsu Province: BK20140045, BK20131000, BK20150927; and Six talent peaks project in Jiangsu Province: 2015-DZXX-013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, F., Xu, X., Li, T. et al. Attitude tracking control for Mars entry vehicle via T-S model with time-varying input delay. Nonlinear Dyn 85, 1749–1764 (2016). https://doi.org/10.1007/s11071-016-2791-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2791-4

Keywords

Navigation