Skip to main content
Log in

Resonances of periodic orbits in the Lorenz system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Usually, the physical interest of the Lorenz system is restricted to the region where its three parameters are positive. However, this famous system appears, when \(\sigma <0\), in the study of a thermosolutal convection model and in the analysis of traveling-wave solutions of the Maxwell–Bloch equations. In this context, a Takens–Bogdanov bifurcation of heteroclinic type becomes an important organizing center. It has been very recently shown that the periodic orbit born in the Hopf bifurcation of the origin undergoes a torus bifurcation. In this paper we perform a detailed numerical study of the resonances of periodic orbits in the three-parameter Lorenz system, \( \dot{x} = \sigma (y-x), \ \dot{y} = \rho x - y - xz, \ \dot{z} = -bz + xy, \) when \(\sigma <0\) and \(\rho , b >0\). The combination of numerical continuation methods and Poincaré sections of the flow provides important information of how the resonances appear and evolve giving rise to a very rich dynamical and bifurcation scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  2. Sparrow, C.: The Lorenz Equations. Springer, New York (1982)

    MATH  Google Scholar 

  3. Barrio, R., Serrano, S.: Bounds for the chaotic region in the Lorenz model. Phys. D 238, 1615–1624 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Llibre, J., Messias, M., da Silva, P.R.: Global dynamics of the Lorenz system with invariant algebraic surfaces. Int. J. Bifurc. Chaos 20, 3137–3155 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Doedel, E.J., Krauskopf, B., Osinga, H.M.: Global invariant manifolds in the transition to preturbulence in the Lorenz system. Indag. Math. 22, 222–240 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barrio, R., Blesa, F., Serrano, S.: Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci. Phys. Rev. E 84, 035201 (2011)

    Article  Google Scholar 

  7. Barrio, R., Shilnikov, A.L., Shilnikov, L.: Kneadings, symbolic dynamics and painting Lorenz chaos. Int. J. Bifurc. Chaos 22, 1230016 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Chen’s attractor exists if Lorenz repulsor exists: the Chen system is a special case of the Lorenz system. Chaos 23, 033108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: The Lü system is a particular case of the Lorenz system. Phys. Lett. A 377, 2771–2776 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Centers on center manifolds in the Lorenz, Chen and Lü systems. Commun. Nonlinear Sci. Numer. Simul. 19, 772–775 (2014)

    Article  MathSciNet  Google Scholar 

  11. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Analysis of the T-point-Hopf bifurcation in the Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 22, 676–691 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Creaser, J.L., Krauskopf, B., Osinga, H.M.: \(\alpha \)-flips and T-points in the Lorenz system. Nonlinearity 28, R39–R65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Algaba, A., Domínguez-Moreno, M.C., Merino, M., Rodríguez-Luis, A.J.: Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems. Nonlinear Dyn. 79, 885–902 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Algaba, A., Domínguez-Moreno, M.C., Merino, M., Rodríguez-Luis, A.J.: Takens-Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 30, 328–343 (2016)

    Article  MathSciNet  Google Scholar 

  15. Doedel, E.J., Krauskopf, B., Osinga, H.M.: Global organization of phase space in the transition to chaos in the Lorenz system. Nonlinearity 28, 113–139 (2015)

  16. Zhou, T., Chen, G.: Classification of chaos in 3-D autonomous quadratic systems-I. Basic framework and methods. Int. J. Bifurc. Chaos 16, 2459–2479 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhou, T., Tang, Y., Chen, G.: Chen’s attractor exists. Int. J. Bifurc. Chaos 14, 3167–3178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhou, T., Chen, G., Čelikovský, S.: Ši’lnikov chaos in the generalized Lorenz canonical form of dynamical systems. Nonlinear Dyn. 39, 319–334 (2005)

    Article  MATH  Google Scholar 

  19. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Rebuttal of “Existence of attractor and control of a 3D differential system” by Z. Wang. Nonlinear Dyn. 69, 2289–2291 (2012)

    Article  Google Scholar 

  20. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Comment on “Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems” [Appl. Math. Comput. 218 (2012) 11859–11870]. Appl. Math. Comput. 244, 49–56 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Comment on “Silnikov chaos of the Liu system” [Chaos 18, 013113 (2008)]. Chaos. 21, 048101 (2011)

  22. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Comment on “Heteroclinic orbits in Chen circuit with time delay” [Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 3058-3066]. Commun. Nonlinear Sci. Numer. Simulat. 17, 2708-2710 (2012)

  23. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Comment on “Existence of heteroclinic orbits of the Shilnikov type in a 3D quadratic autonomous chaotic system” [J. Math. Anal. Appl. 315 (2006) 106–119]. J. Math. Anal. Appl. 392, 99–101 (2012)

  24. Algaba, A., Fernández-Sánchez, F., Merino, M., Rodríguez-Luis, A.J.: Comment on “\(\breve{{\rm S}}\)ilnikov-type orbits of Lorenz-family systems” [Physica A 375 (2007) 438–446]. Physica. A. 392, 4252–4257 (2013)

  25. Elgin, J.N., Molina Garza, J.B.: Traveling wave solutions of the Maxwell–Bloch equations. Phys. Rev. A 35, 3986–3988 (1987)

    Article  MathSciNet  Google Scholar 

  26. Knobloch, E., Proctor, M.R.E., Weiss, N.O.: Heteroclinic bifurcations in a simple model of double-diffusive convection. J. Fluid Mech. 239, 273–292 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  28. Devaney, R.L.: An Introduction to Chaotic Dynamics. Benjamin/Cummings, Menlo Park (1986)

    MATH  Google Scholar 

  29. Chow, S., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  30. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (2004)

    Book  MATH  Google Scholar 

  31. Algaba, A., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: Resonances of periodic orbits in Rössler system in presence of a triple-zero bifurcation. Int. J. Bifurc. Chaos 17, 1997–2008 (2007)

    Article  MATH  Google Scholar 

  32. Algaba, A., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: Analysis of Hopf and Takens–Bogdanov bifurcations in a modified van der Pol-Duffing oscillator. Nonlinear Dyn. 16, 369–404 (1998)

  33. Algaba, A., Merino, M., Rodríguez-Luis, A.J.: Evolution of Arnold’s Tongues in a \({\mathbb{Z}}_2\)-symmetric electronic circuit. IEICE Trans. Fundam. Electr. E82–A, 1714–1721 (1999)

  34. Algaba, A., Merino, M., Rodríguez-Luis, A.J.: Takens-Bogdanov bifurcations of periodic orbits and Arnold’s tongues in a three-dimensional electronic model. Int. J. Bifurc. Chaos 11, 513–531 (2001)

    Article  MATH  Google Scholar 

  35. Algaba, A., Gamero, E., García, C., Merino, M.: A degenerate Hopf-saddle-node bifurcation analysis in a family of electronic circuits. Nonlinear Dyn. 48, 55–76 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hale, J.K.: Ordinary Differential Equations. Krieger Publishing Company, Malabar (1980)

    MATH  Google Scholar 

  37. Doedel, E.J., Champneys, A.R., Dercole, F., Fairgrieve, T., Kuznetsov, Y., Oldeman, B., Paffenroth, R., Sandstede, B., Wang, X., Zhang, C.: AUTO-07P: Continuation and bifurcation software for ordinary differential equations (with HomCont). Technical report, Concordia University (2010)

  38. Back, A., Guckenheimer, J., Myers, M.R., Wicklin, F.J., Worfolk, P.A.: DsTool: computer assisted exploration of dynamical systems. Not. Am. Math. Soc. 39, 303–309 (1992)

    Google Scholar 

  39. Peckman, B.B., Frouzakis, C.E., Kevrekidis, I.: Bananas and bananas splits: a parametric degeneracy in the Hopf bifurcation for maps. SIAM J. Math. Anal. 26, 190–217 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro J. Rodríguez-Luis.

Additional information

This work has been partially supported by the Ministerio de Educación y Ciencia, Plan Nacional I+D+I co-financed with FEDER funds, in the frame of the projects MTM2010-20907-C02 and MTM2014-56272-C2, and by the Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía (FQM-276, TIC-0130 and P12-FQM-1658).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algaba, A., Gamero, E., Merino, M. et al. Resonances of periodic orbits in the Lorenz system. Nonlinear Dyn 84, 2111–2136 (2016). https://doi.org/10.1007/s11071-016-2632-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2632-5

Keywords

Navigation