Skip to main content
Log in

The dependence of synchronization transition processes of coupled neurons with coexisting spiking and bursting on the control parameter, initial value, and attraction domain

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

As the value of a control parameter decreases, monostable bursting changes to monostable spiking via the coexistence of spiking and bursting in a Leech neuron model, and the attraction domain of the bursting decreases, while that of the coexisting spiking increases for coexisting behaviors. As the coupling strength increases, the two coupled Leech neurons with the coexisting spiking and bursting manifest transitions from non-synchronization to complete synchronization (CS) through a complex process, which is dependent of the values of the control parameter, cases of configurations (one neuron spiking and the other bursting, both bursting, and both spiking), and the initial values of the two neurons. The transition processes involve various spiking and bursting or chaos synchronization states for the first two cases given here, but contain only spiking patterns for the last case. Corresponding with the attraction domain, the probability of initial values that can lead to bursting patterns of CS decreases, but the probability of initial values that can induce spiking of CS increases for the former two cases, as the control parameter is decreased. This phenomenon can also be interpreted by the structure and volume of the attraction domain with which all initial values can only induce CS of spiking for case 3. The results may improve understanding of the synchronization dynamics of the coupled neurons with coexisting behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.S.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  2. Glass, L.: Synchronization and rhythmic processes in physiology. Nature 410(6825), 277–284 (2001)

    Article  Google Scholar 

  3. Gu, H.G., Pan, B.B., Xu, J.: Experimental observation of spike, burst and chaos synchronization of calcium concentration oscillation. EPL 106(5), 50003 (2014)

    Article  Google Scholar 

  4. Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18(1), 555–586 (1995)

    Article  Google Scholar 

  5. Llinás, R., Ribary, U.: Coherent 40-Hz oscillation characterizes dream state in humans. Proc. Natl. Acad. Sci. USA 90(5), 2078–2081 (1993)

    Article  Google Scholar 

  6. Hartline, D.K.: Pattern generation in the lobster (Panulirus) stomatogastric ganglion. II. Pyloric network simulation. Biol. Cybern. 33(4), 223–236 (1979)

    Article  Google Scholar 

  7. Kim, K.H., Yoon, J., Kim, J.H., Junq, K.Y.: Changes in gamma-band power and phase synchronization with the difficulty of a visual oddball task. Brain Res. 1236, 105–112 (2008)

    Article  Google Scholar 

  8. Choi, J.W., Jung, K.Y., Kim, C.H., Kim, K.H.: Changes in gamma-and theta-band phase synchronization patterns due to the difficulty of auditory oddball task. Neurosci. Lett. 468(2), 156–160 (2010)

    Article  Google Scholar 

  9. Bartsch, R., Kantelhardt, J.W., Penzel, T., Havlin, S.: Experimental evidence for phase synchronization transitions in the human cardiorespiratory system. Phys. Rev. Lett. 98, 54102 (2007)

    Article  Google Scholar 

  10. Batista, C.A., Viana, R.L., Ferrari, F.A., Lopes, S.R., Batista, A.M., Coninck, J.C.: Control of bursting synchronization in networks of Hodgkin–Huxley-type neurons with chemical synapses. Phys. Rev. E 87(4), 042713 (2013)

    Article  Google Scholar 

  11. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gómez-Gardeñes, J., Gómez, S., Arenas, A., Moreno, Y.: Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 106(12), 128701 (2011)

    Article  Google Scholar 

  13. Droz, M., Lipowski, A.: Dynamical properties of the synchronization transition. Phys. Rev. E 67(5), 056204 (2003)

    Article  MathSciNet  Google Scholar 

  14. Liang, X., Tang, M., Dhamala, M., Liu, Z.: Phase synchronization of inhibitory bursting neurons induced by distributed time delays in chemical coupling. Phys. Rev. E 80(6), 066202 (2009)

    Article  Google Scholar 

  15. Wang, Q.Y., Chen, G.R., Perc, M.: Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS One 6(1), e15851 (2011)

    Article  Google Scholar 

  16. Dhamala, M., Jirsa, V.K., Ding, M.Z.: Transitions to synchrony in coupled bursting neurons. Phys. Rev. Lett. 92(2), 028101 (2004)

    Article  Google Scholar 

  17. Sun, X.J., Lei, J.Z., Perc, M., Kurths, J., Chen, G.R.: Burst synchronization transitions in a neuronal network of subnetworks. Chaos 21(1), 016110 (2011)

    Article  Google Scholar 

  18. Sun, X.J., Han, F., Wiercigroch, M., Shi, X.: Effects of time periodic intercoupling strength on burst synchronization of a clustered neuronal network. Int. J. Nonlinear Mech. 70, 119–125 (2015)

    Article  Google Scholar 

  19. Buzki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304(5679), 1926–1929 (2004)

    Article  Google Scholar 

  20. Gray, C.M., König, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213), 334–337 (1989)

    Article  Google Scholar 

  21. Ozbudak, E.M., Thattai, M., Lim, H.N., Shraiman, B.I., van Oudenaarden, A.: Multistability in the lactose utilization network of Escherichia coli. Nature 427(6976), 737–740 (2004)

    Article  Google Scholar 

  22. Guttman, R., Lewis, S., Rinzel, J.: Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator. J. Physiol. 305(1), 377–395 (1980)

    Article  Google Scholar 

  23. Izhikevich, E.M.: Neurol exitability, spiking and bursting. Int. J. Bifurcat. Chaos 10(6), 1171–1266 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tateno, T., Pakdaman, K.: Random dynamics of the Morris–Lecar neural model. Chaos 14(3), 511–530 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lechner, H.A., Baxter, D.A., Clark, J.W., Byrne, J.H.: Bistability and its regulation by serotonin in the endogenously bursting neuron R15 in Aplysia. J. Neurophysiol. 75(2), 957–962 (1996)

    Google Scholar 

  26. Fröhlich, F., Bazhenov, M.: Coexistence of tonic firing and bursting in cortical neurons. Phys. Rev. E 74(3), 031922 (2006)

    Article  Google Scholar 

  27. Cymbalyuk, G., Shilnikov, A.: Coexistence of tonic spiking oscillations in a leech neuron model. J. Comput. Neurosci. 18(3), 255–263 (2005)

    Article  MathSciNet  Google Scholar 

  28. Xu, Y.L., Yang, M.H., Liu, Z.Q., Liu, H.J., Gu, H.G., Ren, W.: Three cases of the bifurcation from period 1 to period 2 bursting in theoretical and experimental neural models. Dyn. Contin. Discrete Impuls. Syst. Ser. B 14(S5), 35–40 (2007)

    MathSciNet  Google Scholar 

  29. Pisarchik, A.N., Jaimes-Reátegui, R., García-López, J.H.: Synchronization of coupled bistable chaotic systems: experimental study. Philos. Trans. R. Soc. A 366(1864), 459–473 (2008)

    Article  Google Scholar 

  30. Pisarchik, A.N., Jaimes-Reátegui, R., García-López, J.H.: Synchronization of multistable systems. Int. J. Bifurcat. Chaos 18(6), 1801–1819 (2008)

    Article  Google Scholar 

  31. Pisarchik, A.N., Jaimes-Reátegui, R., Villalobos-Salazar, J.R., García-López, J.H., Boccaletti, S.: Synchronization of chaotic systems with coexisting attractors. Phys. Rev. Lett. 96(24), 244102 (2006)

    Article  Google Scholar 

  32. Sausedo-Solorio, J.M., Pisarchik, A.N.: Dynamics of unidirectionally coupled bistable Hénon maps. Phys. Lett. A 375(42), 3677–3681 (2011)

    Article  MATH  Google Scholar 

  33. Ruiz-Oliveras, F.R., Pisarchik, A.N.: Synchronization of semiconductor laser with coexisting attractors. Phys. Rev. E 79(1), 016202 (2009)

    Article  Google Scholar 

  34. Wang, Q.Y., Duan, Z.S., Feng, Z.S., Chen, G.R., Lu, Q.S.: Synchronization transition in gap-junction-coupled leech neurons. Phys. A 387(16), 4404–4410 (2008)

    Article  Google Scholar 

  35. Gu, H.G., Li, Y.Y., Jia, B., Chen, G.R.: Parameter-dependent synchronization transition of coupled neurons with co-existing spiking and bursting. Phys. A 392(15), 3281–3292 (2013)

    Article  MathSciNet  Google Scholar 

  36. Jia, B.: Synchronization transition of coupled neurons with coexisting behaviors near a sub-critical Hopf bifurcation. Chin. Phys. B 23, 050510 (2014)

    Article  Google Scholar 

  37. Gu, H.G., Chen, S.G., Li, Y.Y.: Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns. Chin. Phys. B 24(5), 050505 (2015)

    Article  Google Scholar 

  38. Shilnikov, A., Calabrese, R.L., Cymbalyuk, G.: Mechanism of bistability: tonic spiking and bursting in a neuron model. Phys. Rev. E 71(5), 056214 (2005)

    Article  MathSciNet  Google Scholar 

  39. Cymbalyuk, G.S., Calabrese, R.L.: A model of slow plateau-like oscillations based upon the fast Na\({^+}\) current in a window mode. Neurocomputing 38, 159–166 (2001)

    Article  Google Scholar 

  40. Shilnikov, A., Cymbalyuk, G.: Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys. Rev. Lett. 94(4), 048101 (2005)

    Article  Google Scholar 

  41. Gu, H.G.: Experimental observation of transitions from chaotic bursting to chaotic spiking in a neural pacemaker. Chaos 23(2), 023126 (2013)

    Article  MathSciNet  Google Scholar 

  42. Gu, H.G., Xiao, W.W.: Difference between intermittent chaotic bursting and spiking of neural firing patterns. Int. J. Bifurcat. Chaos 24(6), 1450082 (2014)

    Article  MathSciNet  Google Scholar 

  43. Gu, H.G., Pan, B.B., Chen, G.R., Duan, L.X.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78(1), 391–407 (2014)

    Article  MathSciNet  Google Scholar 

  44. Gu, H.G., Chen, S.G.: Potassium-induced bifurcations and chaos in neural firing patterns observed from a biological experimental pacemaker. Sci. China Technol. Sci. 57(5), 864–871 (2014)

    Article  Google Scholar 

  45. Gu, H.G.: Biological experimental observation of an unnoticed chaos as simulated by the Hindmarsh–Rose model. PLoS One 8(12), e81759 (2013)

    Article  Google Scholar 

  46. Cross-correlation coefficient. https://en.wikipedia.org/wiki/Correlation_and_dependence

  47. Abe, H., Tsumoto, S.: Knowledge-Based Intelligent Information and Engineering Systems. Springer, Germany (2010)

    Google Scholar 

  48. Wang, H.J., Huang, H.B., Qi, G.X.: Coexistence of anticipated and layered chaotic synchronization in time-delay systems. Phys. Rev. E 72(3), 037203 (2005)

    Article  Google Scholar 

  49. Pikovsky, A., Zaks, M., Rosenblum, M., Osipov, G., Kurths, J.: Phase synchronization of chaotic oscillations in terms of periodic orbits. Chaos 7(4), 680–687 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  50. Chen, J.Y., Wong, K.W., Shuai, J.W.: Phase synchronization in coupled chaotic oscillators with time delay. Phys. Rev. E 66(5), 056203 (2002)

    Article  Google Scholar 

  51. Taherion, S., Lai, Y.C.: Observability of lag synchronization of coupled chaotic oscillators. Phys. Rev. E 59(6), R6247 (1999)

    Article  Google Scholar 

  52. Corron, N.J., Blakely, J.N., Pethel, S.D.: Lag and anticipating synchronization without time-delay coupling. Chaos 15(2), 023110 (2005)

    Article  Google Scholar 

  53. Wu, X., Ma, J.: The formation mechanism of defects, spiral wave in the network of neurons. PLoS One 8(1), e55403 (2013)

    Article  Google Scholar 

  54. Ma, J., Huang, L., Wang, C.N., Pu, Z.S.: Robustness, death of spiral wave in the network of neurons under partial ion channel block. Commun. Theor. Phys. 59(2), 233 (2013)

    Article  MATH  Google Scholar 

  55. Qin, H.X., Ma, J., Jin, W.Y., Wang, C.N.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57(5), 936–946 (2014)

    Article  MathSciNet  Google Scholar 

  56. Song, Z.G., Xu, J.: Codimension-two bursting analysis in the delayed neural system with external stimulations. Nonlinear Dyn. 67, 309–328 (2012)

    Article  MATH  Google Scholar 

  57. Song, Z.G., Xu, J.: Bifurcation and chaos analysis for a delayed two-neural network with a variation slope ratio in the activation function. Int. J. Bifurcat. Chaos 22(05), 1250105 (2012)

    Article  Google Scholar 

  58. Song, Z.G., Xu, J.: Stability switches and Bogdanov-Takens bifurcation in an inertial two-neuron coupling system with multiple delays. Sci. China Tech. Sci. 57(5), 893–904 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaguang Gu.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11372224 and 11402039 and the Fundamental Research Funds for Central Universities designated to Tongji University under Grant No. 1330219127.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, H., Pan, B. & Li, Y. The dependence of synchronization transition processes of coupled neurons with coexisting spiking and bursting on the control parameter, initial value, and attraction domain. Nonlinear Dyn 82, 1191–1210 (2015). https://doi.org/10.1007/s11071-015-2226-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2226-7

Keywords

Navigation