Skip to main content
Log in

A new 3D chaotic cipher for encrypting two data streams simultaneously

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new three-dimensional (3D) discrete chaotic cipher is proposed which is based on the 3D Lorenz chaotic system. Non-autonomous modulation which is used in continuous chaotic cryptographic systems is employed to encrypt two messages simultaneously. Each pair of data values is encrypted twice so that only one state variable need be transmitted. The proposed algorithm has a simple structure and so is suitable for practical applications. The cryptographic properties are analyzed. Results are presented which show that this algorithm provides excellent security and is resistant to existing attacks such as those based on synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carroll, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. I 38, 453–456 (1991)

    Article  Google Scholar 

  2. Álvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16, 2129–2151 (2006)

    Article  Google Scholar 

  3. Anishchenko, V., Vadivasova, T., Okrokvertskhov, G., Strelkova, G.: Correlation analysis of dynamical chaos. Phys. A Stat. Mech. Appl. 325, 199–212 (2003)

    Article  MathSciNet  Google Scholar 

  4. Kocarev, L., Halle, K.S., Eckert, K., Chua, L.O., Parlitz, U.: Experimental demonstration of secure communications via chaotic synchronization. Int. J. Bifurc. Chaos 02, 709–713 (1992)

    Article  Google Scholar 

  5. Álvarez, G., Li, S., Montoya, F., Pastor, G., Romera, M.: Breaking projective chaos synchronization secure communication using filtering and generalized synchronization. Chaos Solitons Fractals 24, 775–783 (2005)

    Article  Google Scholar 

  6. Dedieu, H., Kennedy, M., Hasler, M.: Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Trans. Circuits Syst. II 40, 634–642 (1993)

    Article  Google Scholar 

  7. Yang, T., Yang, L.B., Yang, C.M.: Breaking chaotic switching using generalized synchronization: examples. IEEE Trans. Circuits Syst. I 45, 1062–1067 (1998)

    Article  Google Scholar 

  8. Yang, T., Chua, L.O.: Secure communication via chaotic parameter modulation. IEEE Trans. Circuits Syst. I 43, 817–819 (1996)

    Article  Google Scholar 

  9. Sobhy, M., Shehata, A.: Secure computer communication using chaotic algorithms. Int. J. Bifurc. Chaos 10, 2831–2839 (2000)

    Article  Google Scholar 

  10. Álvarez, G., Montoya, F., Romera, M., Pastor, G.: Breaking parameter modulated chaotic secure communication system. Chaos Solitons Fractals 21, 783–787 (2004)

    Article  Google Scholar 

  11. Zhou, R., Wu, Q., Zhang, M., Shen, C.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52, 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  12. Huang, R., Rhee, K., Uchida, S.: A parallel image encryption method based on compressive sensing. Multimed. Tools Appl. 72, 71–93 (2014)

    Article  Google Scholar 

  13. Yong, X., Hua, W., Yongge, L., Bin, P.: Image encryption based on synchronization of fractional chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 19, 3735–3744 (2014)

    Article  MathSciNet  Google Scholar 

  14. Xiaoling, H., Guodong, Y.: An image encryption algorithm based on hyper-chaos and DNA sequence. Multimed. Tools Appl. 72, 57–70 (2014)

    Article  Google Scholar 

  15. George, S., Pattathil, D.: A novel approach for secure compressive sensing of images using multiple chaotic maps. J. Opt. 43, 1–17 (2014)

    Article  Google Scholar 

  16. Liu, Z.: Optical color image hiding scheme based on chaotic mapping and Hartley transform. Commun. Opt. Lasers Eng. 51, 967–972 (2013)

    Article  Google Scholar 

  17. Wang, X., Guo, K.: A new image alternate encryption algorithm based on chaotic map. Nonlinear Dyn. 76, 1943–1950 (2014)

    Article  Google Scholar 

  18. Ye, G.: A block image encryption algorithm based on wave transmission and chaotic systems. Nonlinear Dyn. 75, 417–427 (2014)

    Article  Google Scholar 

  19. Lorenz, E.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  20. Haroun, M.F., Gulliver, T.A.: New low complexity discrete 3D chaotic generators for communication and security applications. IET Inform. Secur. (submitted)

  21. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn. Wiley, New York (1996)

    Google Scholar 

  22. Yang, T., Yang, L.B., Yang, C.M.: Cryptanalyzing chaotic secure communications using return maps. Phys. Lett. A 245, 495–510 (1998)

    Article  Google Scholar 

  23. Wu, X., Hu, H., Zhang, B.: Analyzing and improving a chaotic encryption method. Chaos Solitons Fractals 22, 367–373 (2004)

    Article  Google Scholar 

  24. Li, S., Álvarez, G., Chen, G.: Breaking a chaos-based secure communication scheme designed by an improved modulation method. Chaos Solitons Fractals 25, 109–120 (2005)

    Article  Google Scholar 

  25. Orue, A., Álvarez, G., Pastor, G., Romera, M., Montoya, F., Li, S.: A new parameter determination method for some double-scroll chaotic systems and its applications to chaotic cryptanalysis. Commun. Nonlinear Sci. Numer. Simul. 15, 3471–3483 (2010)

    Article  MathSciNet  Google Scholar 

  26. Stojanovski, T., Kocarev, L., Parlitz, U.: A simple method to reveal the parameters of the Lorenz system. Int. J. Bifurc. Chaos 6, 2645–2652 (1996)

    Article  Google Scholar 

  27. Solak, E.: Partial identification of Lorenz system and its application to key space reduction of chaotic cryptosystems. IEEE Trans. Circuits Syst. II 51, 557–560 (2004)

    Article  Google Scholar 

  28. Rhouma, R., Meherzi, S., Belghith, S.: OCML-based colour image encryption. Chaos Solitons Fractals 40, 309–318 (2009)

    Article  Google Scholar 

  29. Liu, H., Wang, X.: Color image encryption based on one-time keys and robust chaotic maps. Comput. Math. Appl. 59, 3320–3327 (2010)

    Article  MathSciNet  Google Scholar 

  30. Wang, X., Zhao, J., Liu, H.: A new image encryption algorithm based on chaos. Opt. Commun. 285, 562–566 (2012)

    Article  Google Scholar 

  31. Abd El-Latif, A.A., Niu, X.: A hybrid chaotic system and cyclic elliptic curve for image encryption. AEU Int. J. Electron. Commun. 67, 136–143 (2013)

    Article  Google Scholar 

  32. Patidar, V., Pareek, N.K., Purohit, G., Sud, K.K.: A robust and secure chaotic standard map based pseudorandom permutation-substitution scheme for image encryption. Opt. Commun. 284, 4331–4339 (2011)

    Article  Google Scholar 

  33. Sayedzadeh, S.M., Mirzakuchaki, S.: A fast color image encryption algorithm based on coupled two-dimensional piecewise chaotic map. Signal Proc. 92, 1202–1215 (2012)

    Article  Google Scholar 

  34. Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21, 749–761 (2004)

    Article  MathSciNet  Google Scholar 

  35. Kanso, A., Ghebleh, M.: A novel image encryption algorithm based on a 3D chaotic map. Commun. Nonlinear Sci. Numer. Simul. 17, 2943–2959 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad F. Haroun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haroun, M.F., Gulliver, T.A. A new 3D chaotic cipher for encrypting two data streams simultaneously. Nonlinear Dyn 81, 1053–1066 (2015). https://doi.org/10.1007/s11071-015-2048-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2048-7

Keywords

Navigation