Skip to main content
Log in

Why can a free-falling cat always manage to land safely on its feet?

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Udwadia–Kalaba equation is a simple, aesthetic and thought-provoking description of the world at a very fundamental level. It is about the way systems of bodies move. We creatively apply the Udwadia–Kalaba approach to study falling cat’s movements. The cat is modeled as a constrained discrete dynamical system. In an alternative way, Udwadia–Kalaba formulation is used for analysis of the falling cat’s dynamics. With this novel approach, we can easily obtain the dynamical model and get the explicit analytic form of the general equations of motion of the falling cat. The surprise phenomenon (that a cat when dropped at rest with its feet pointing up can always manage to right itself and land safely on its feet) is observed through numerical simulation based on the constructed dynamical model. Unmatched ease, clarity and elegance of the Udwadia–Kalaba formulation for solving the falling cat problem (constrained discrete dynamical system or multibody system) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Appell, P.: Sur une Forme Generale des Equations de la Dynamique. Comptes rendus de l’Academie des sciences 129, 459–460 (1899)

    MATH  Google Scholar 

  2. Batterman, R.W.: Falling cats, parallel parking, and polarized light. Stud. Hist. Philos. Mod. Phys. 129, 1–40 (2003)

    Google Scholar 

  3. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bjerhammer, A.: Rectangular reciprocal matrices with special reference to geodetic calculations. Bull. Geod. 52, 188–220 (1951)

    Article  Google Scholar 

  5. Dirac, P.A.M.: Lectures in Quantum Mechanics. Yeshiva University, New York (1964)

    Google Scholar 

  6. Gauss, C.F.: Uber ein neues allgemeines Grundgsetz der Mechanik. Journal of die reine und angewandte Mathematik 4, 232–235 (1829)

    Article  MATH  Google Scholar 

  7. Ge, X., Chen, L.: Optimal control of nonholonomic motion planning for a free-falling cat. Appl. Math. Mech. 7, 601–607 (2007). doi:10.1007/s10483-007-0505-z

    Article  MathSciNet  Google Scholar 

  8. Guyou, E.: Note Sur Les Approximations Numeriques. Kessinger Publishing, Montana (1891)

    Google Scholar 

  9. Gibbs, J.W.: On the fundamental formulae of dynamics. Am. J. Math. 2, 49–64 (1879)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kane, T.R.: Dynamics of nonholonomic systems. J. Appl. Mech. 28(4), 574–578 (1961)

  11. Kane, T.R., Scher, M.P.: A dynamical explanation of the falling cat phenomenon. Int. J. Solids Struct. 5, 663–670 (1969). doi:10.1016/0020-7683(69)90086-9

    Article  Google Scholar 

  12. Kane, T.R.: Dynamics, 3rd edn. Stanford University, Stanford, CA (1978)

    Google Scholar 

  13. Kane, T.R., Levinson, D.A.: Multibody dynamics. J. Appl. Mech. 50, 1071–1078 (1983)

  14. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Application. McGraw-Hill, New York (1985)

    Google Scholar 

  15. Lagrange, J.L.: Mechanique Analytique. Mme ve Courcier, Paris (1787)

  16. Liu, Y.Z.: On the turning motion of a free-falling cat. Acta Mech. Sin. 4, 388–393 (1982) (In Chinese)

  17. Loitsyansky, A.I.: Theoretical Mechanics. Saint Petersburger, Moscow (1953)

    Google Scholar 

  18. Marey, M.: Méchanique Animale. La Nature 119, 596–597 (1894)

    Google Scholar 

  19. McDonald, D.A.: How does a cat fall on its feet? New Sci. 7, 1647–1649 (1960)

    Google Scholar 

  20. Montgomery, R.: Gauge theory of the falling cat. Am. Math. Soc. 1, 193–218 (1993)

    Google Scholar 

  21. Moore, E.H.: On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 26, 294–395 (1920)

    Article  Google Scholar 

  22. Pars, L.A.: A Treatise on Analytical Dynamics. Ox Bow Press, Connecticut (1965)

    MATH  Google Scholar 

  23. Penrose, R.: A generalized inverse of matrices. Proc. Cambr. Philos. Soc. 51, 404–413 (1955)

    Article  Google Scholar 

  24. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. 439, 407–410 (1992). doi:10.1098/rspa.1992.0158

    Article  MATH  MathSciNet  Google Scholar 

  25. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  26. Udwadia, F.E., Kalaba, R.E.: Explicit equations of motion for mechanical systems with non-ideal constraints. J. Appl. Mech. 68, 462–467 (2001). doi:10.1115/1.1364492

    Article  MATH  Google Scholar 

  27. Udwadia, F.E., Kalaba, R.E.: On constrained motion. Appl. Math. Comput. 164, 313–320 (2005). doi:10.1016/j.amc.2004.06.039

    Article  MATH  MathSciNet  Google Scholar 

  28. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. 462, 2097–2117 (2006). doi:10.11098/rspa.2006.1662

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhao, H., Zhen, S.C., Chen, Y.H.: Dynamic modeling and simulation of multibody systems using the Udwadia–Kalaba theory. Chin. J. Mech. Eng. 26(5), 839–850 (2013)

    Article  Google Scholar 

  30. Zhen, S.C., Zhao, H., Huang, K., Chen, Y.H.: On Kepler’s law: application of the Udwadia–Kalaba theory. Sci. Sin. Phys. Mech. Astron. 44(1), 24–31 (2014) (in Chinese)

  31. Zhong, F.: A two-rigid-body model of the free-falling cat. Acta Mech. Sin. 17, 1 (1985)

    Google Scholar 

Download references

Acknowledgments

Here, we show thanks and appreciations sincerely to Professor Jie Tian of Hefei University of Technology (China) for his instructions and help during the process of research. The research is supported by the National High-tech Research and Development Program of China (863 Program: 2012AA112201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengchao Zhen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, S., Huang, K., Zhao, H. et al. Why can a free-falling cat always manage to land safely on its feet?. Nonlinear Dyn 79, 2237–2250 (2015). https://doi.org/10.1007/s11071-014-1741-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1741-2

Keywords