Skip to main content

Advertisement

Log in

Exploiting internal resonance for vibration suppression and energy harvesting from structures using an inner mounted oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The flexural vibration of a symmetrically laminated composite cantilever beam carrying a sliding mass under harmonic base excitations is investigated. An internally mounted oscillator constrained to move along the beam is employed in order to fulfill a multi-task that consists of both attenuating the beam vibrations in a resonance status and harvesting this residual energy as a complementary subtask. The set of nonlinear partial differential equations of motion derived by Hamilton’s principle are reduced and semi-analytically solved by the successive application of Galerkin’s and the multiple-scales perturbation methods. It is shown that by properly tuning the natural frequencies of the system, internal resonance condition can be achieved. Stability of fixed points and bifurcation of steady-state solutions are studied for internal and external resonances status. It results that transfer of energy or modal saturation phenomenon occurs between vibrational modes of the beam and the sliding mass motion through fulfilling an internal resonance condition. This study also reveals that absorbers can be successfully implemented inside structures without affecting their functionality and encumbering additional space but can also be designed to convert transverse vibrations into internal longitudinal oscillations exploitable in a straightforward manner to produce electrical energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(xyz\) :

Inertial coordinate system

\(u(s,t),v(s,t),w(s,t)\) :

Beam neutral axis deflection along \(x,y\) and \(z\) axes

\(\xi \eta \zeta \) :

Principle axes coordinate system of beam cross-section at position \(s\)

\(c_i , i=u,v,w,\phi \) :

Damping coefficients

\(r(t)\) :

Position of moving mass from the clamped end

\(\psi (s,t),\theta (s,t),\phi (s,t)\) :

Beam neutral axis Euler rotation angles

\(m\) :

Mass of the beam per unit length \(l\)

\(\hat{{e}}_i ,i=x,y,z,\xi ,\eta ,\zeta \) :

Unit vector along the \(i\) axis

\(J_\xi ,J_\eta ,J_\zeta \) :

Principal mass moments of inertia

\(D_{11} ,D_{22} ,D_{33} ,D_{13}\) :

Bending and stiffness rigidities

\(\begin{array}{l} E_1 ,E_2 ,E_3 \\ G_{12} ,G_{13} , \\ G_{23} \\ \end{array}\) :

Elastic and shear modulus

\(\vec {F}_c\) :

Applied force vector to the moving mass

\(m_a\) :

Moving mass

\(Q_i , i=u,v,w,\phi \) :

External forces

\(\vec {v}_m\) :

Velocity vector of the moving mass

\(\vec {r}_m\) :

Position vector of the moving mass

\(\ell (s,t)\) :

Lagrangian density

\(k_a\) :

Controller gain

\(r_e\) :

Equilibrium position of the moving mass

\(k_s\) :

Nondimensional controller gain

References

  1. Zavodney, L.D., Nayfeh, A.H.: The nonlinear response of a slender beam carrying a lumped mass to a principal parametric excitation: theory and experiment. Int. J. Non-linear Mech. 2(24), 105–125 (1989)

    Article  Google Scholar 

  2. Khalily, F., Golnaraghi, M.F., Heppler, G.R.: On the dynamic behavior of a flexible beam carrying a moving mass. Nonlinear Dyn. 5, 493–513 (1994)

    Article  Google Scholar 

  3. Ichikawa, M., Miyakawa, Y., Matsuda, A.: Vibration analysis of the continuous beam subjected to a moving mass. J. Sound Vib. 230(3), 493–506 (2000)

    Google Scholar 

  4. Kononov, A.V., de. Borst, R.: Instability analysis of vibrations of a uniformly moving mass in one and two-dimensional elastic systems. Eur. J. Mech. A/Solids 21, 151–165 (2002)

    Google Scholar 

  5. Verichev, S.N., Metrikine, A.V.: Instability of vibrations of a mass that moves uniformly along a beam on a periodically inhomogeneous foundation. J. Sound Vib. 260, 901–925 (2003)

    Article  Google Scholar 

  6. Siddiqui, S.A.Q., Golnaraghi, M.F., Heppler, G.R.: Dynamics of a flexible cantilever beam carrying a moving mass. Nonlinear Dyn. 15, 137–154 (1998)

    Article  MATH  Google Scholar 

  7. Siddiqui, S.A.Q., Golnaraghi, M.F., Heppler, G.R.: Dynamics of a flexible beam carrying a moving mass using perturbation, numerical and time-frequency analysis techniques. J. Sound Vib. 229(5), 1023–1055 (2000)

    Article  Google Scholar 

  8. Siddiqui, S.A.Q., Golnaraghi, M.F., Heppler, G.R.: Large free vibrations of a beam carrying moving mass. Int. J. Non-linear Mech. 1(38), 1481–1493 (2003)

    Article  Google Scholar 

  9. Golnaraghi, M.F.: Vibration suppression of flexible structures using internal resonance. Mech. Res. Commun. J. 18(2/3), 135–143 (1991)

    Article  MATH  Google Scholar 

  10. Golnaraghi, M.F.: Regulation of flexible structures via nonlinear coupling. J. Dyn. Control 1, 405–428 (1991)

    Article  MathSciNet  Google Scholar 

  11. Nayfeh, A.: Nonlinear Interact. Wiley, New York (2000)

    Google Scholar 

  12. Zhu, D., Tudor, M.J., et al.: Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas. Sci. Technol. 21(2), 1–29 (2010)

    Google Scholar 

  13. Barton, A.W., Burrow, S.G., Clare, L.R.: Energy harvesting from vibrations with a nonlinear oscillator, J. Vib. Acoust. 132(2), 91–97 (2010)

    Google Scholar 

  14. Gammaitoni, L., Neri, I., Vocca, H.: Nonlinear oscillators for vibration energy harvesting. Appl. Phys. Lett. 94(16), 164102 (2009)

    Google Scholar 

  15. Gammaitoni, L., Vocca, H., Neri, I., Travasso, F., Orfei, F.: In: Tan, Y.K. (ed.) Vibration Energy Harvesting: Linear and Nonlinear Oscillator Approaches, Sustainable Energy Harvesting Technologies—Past, Present and Future. ISBN: 978-953-307-438-2, InTech (2011)

  16. C. Lee, D. Stamp, N.R. Kapania, Mur-Miranda, J.O.: Harvesting vibration energy using nonlinear oscillations of an electromagnetic inductor. In: Proceedings of SPIE Energy Harvesting and Storage: Materials, Devices, and Applications (2010); doi:10.1117/12.849895

  17. Abdelkefi, Abdessattar, Hajj, Muhammad R., Nayfeh, Ali H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70(2), 1355–1363 (2012)

  18. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders. Nonlinear Dyn. 70(2), 1377–1388 (2012)

    Article  MathSciNet  Google Scholar 

  19. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Design of piezoaeroelastic energy harvesters. Nonlinear Dyn. 68(4), 519–530 (2012)

    Article  Google Scholar 

  20. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67(2), 1147–1160 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Michael, I., Friswell, S.: Faruque Ali, vertical cantilever beam with tip mass. J. Intell. Mater. Syst. Struct. 23(13), 1505–1521 (2012)

    Article  Google Scholar 

  22. Pai, P.F., Nayfeh, A.H.: Three-dimensional nonlinear vibrations of composite beams-II. Flapwise excitations, nonlinear dynamics 2, 1–34 (1991)

    Article  Google Scholar 

  23. Pai, P.F., Nayfeh, A.H.: Three-dimensional nonlinear vibrations of composite Beams-III. Chordwise Excit. Nonlinear Dyn. 2, 137–156 (1991)

    Article  Google Scholar 

  24. Arafat, H.N.: Non-linear response of cantilever beams, Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, (1999)

  25. Nayfeh, A.H., Mook, D.T., Marshall, L.R.: Nonlinear coupling of pitch and roll modes in ship motion. J. Hydronautics 7, 145–152 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Karimpour.

Appendix

Appendix

The complete form of the equations, referred by their equation number in the main text:

$$\begin{aligned}&(cv_1 )\ddot{V}+(cv_2 )\dot{V}+(cv_3 )V+(cv_4 )E=\varepsilon \left\{ (cv_{n1} )r\ddot{V}\right. \\&\quad +(cv_{n2} )EW +(cv_{n3} )VW+(cv_{n4} )\ddot{E}W\\&\quad +(cv_{n5} )\dot{E}\dot{W}+(cv_{n6} )\ddot{r}V-(cv_{n7} k_s )rV \\&\quad +(cv_{n8} )\dot{r}\dot{V} +(cv_{W^{2}V} )W^{2}V+(cv_{E^{2}V} )E^{2}V\\&\quad +(cv_{V^{3}} )V^{3} +(cv_{E^{3}} )E^{3}+(cv_{EV^{2}} )EV^{2} \\&\quad +(cv_{EW^{2}} )EW^{2}+(cv_{\ddot{V}W^{2}} )\ddot{V}W^{2}\\&\quad +2(cv_{2\dot{V}\dot{W}W} )\dot{V}\dot{W}W+(cv_{r^{2}\ddot{V}} )r^{2}\ddot{V}\\&\quad +(cv_{r\dot{r}\dot{V}} )r\dot{r}\dot{V}+(cv_{r\ddot{r}V} )r\ddot{r}V+(cv_{r^{2}V} )r^{2}V\\&\quad +(cv_{\dot{r}^{2}V} )\dot{r}^{2}V+2(cv_{LV} )(V^{2}\ddot{V}+V\dot{V}^{2})\\&\quad +2(cv_{LW} )(VW\ddot{W}+V\dot{W}^{2}) \\&\quad \left. +\frac{1}{2}\left( \int \limits _0^1 \phi _v (s)ds\right) (f_v \Omega _v^2 ) (e^{i\Omega _v T_0 } +e^{-i\Omega _v T_0 })\right\} ,\end{aligned}$$
(4.4)
$$\begin{aligned}&(cw_1 )\ddot{W}+(cw_2 )\dot{W}+(cw_3 )W=\varepsilon \left\{ (cw_{n1} )r\ddot{W}\right. \\&\quad +(cw_{n2} )EV+(cw_{n3} )\dot{E}\dot{V}+(cw_{n4} )E^{2} \\&\quad +(cw_{n5} )V^{2}+(cw_{n6} )\ddot{r}W-(cw_{n7} k_s )rW \\&\quad +(cw_{r^{2}\ddot{W}} )r^{2}\ddot{W} +(cw_{r^{2}W} )r^{2}W+(cv_{r\ddot{r}W} )r\ddot{r}W \\&\quad + (cv_{\dot{r}^{2}W} )\dot{r}^{2}W+(cw_{WV^{2}} )WV^{2}+(cw_{W^{3}} )W^{3}\\&\quad +(cw_{W\dot{V}^{2}} )W\dot{V}^{2}+(cw_{E^{2}W} )E^{2}W\\&\quad +(cw_{EVW} )EVW +2(cw_{LV} )(VW\ddot{V}\\&\quad +W\dot{V}^{2})+2(cw_{LW} )(W^{2}\ddot{W}+W\dot{W}^{2})\\&\quad \left. +\frac{1}{2}\left( \int \limits _0^1 \phi _w (s)ds\right) (f_w \Omega _w^2 ) (e^{i\Omega _w T_0 }+e^{-i\Omega _w T_0 })\right\} , \end{aligned}$$
(4.5)
$$\begin{aligned}&(c\phi _1 )\ddot{E}+(c\phi _2 )\dot{E}+(c\phi _3 )E+(c\phi _4 )V\\&\quad =\varepsilon \left\{ (c\phi _{n1} )VW +(c\phi _{n2} )EW+(c\phi _{n3} )\ddot{V}W\right. \\&\qquad +(c\phi _{n4} )\dot{V}\dot{W} +(c\phi _{E^{2}V} )E^{2}V+(c\phi _{V^{3}} )V^{3}\\&\qquad +(c\phi _{EV^{2}} )EV^{2} +(c\phi _{EW^{2}} )EW^{2}\\&\qquad \left. +\frac{1}{2}\left( \int \limits _0^1 \phi _\phi (s)ds\right) (f_\phi \Omega _\phi ^2 ) (e^{i\Omega _\phi T_0 }+e^{-i\Omega _\phi T_0 })\right\} , \end{aligned}$$
(4.6)
$$\begin{aligned}&m_s \ddot{r}+k_s r-k_t \dot{q}=\varepsilon \{(cr_{n1} )V\ddot{V} +(cr_{n2} )\dot{V}^{2}\\&\quad +(cr_{n3} )W\ddot{W}+(cr_{n4} )\dot{W}^{2}+(cr_{rW^{2}} )rW^{2} \\&\quad + cr_{r\dot{V}^{2}} (r\dot{V}^{2})+cr_{r\dot{W}^{2}} (r\dot{W}^{2}) \\&\quad +cr_{rV\ddot{V}} (rV\ddot{V})+cr_{rW\ddot{W}} (rW\ddot{W})\}. \end{aligned}$$
(4.7)
$$\begin{aligned}&k_q \ddot{q}+\dot{q}+\varepsilon k_e \dot{r}=0, \end{aligned}$$
(4.8)
$$\begin{aligned}&(cv_1 )D_0^2 V_1 +(cv_3 )V_1 +(cv_4 )E_1 =-2(cv_1 )D_0 D_1 V_0 \\&\quad -(cv_2 )D_0 V_0 +(cv_{n1} )r_1 D_0^2 V_0 \\&\quad +(cv_{n2} )E_0 W_0 + (cv_{n3} )V_0 W_0 +(cv_{n4} )D_0^2 E_0 W_0 \\&\quad +(cv_{n5} )D_0 E_0 D_0 W_0+(cv_{n6} )D_0^2 r_0 V_0 \\&\quad -(cv_{n7} k_s )r_0 V_0 +(cv_{n8} )D_0 r_0 D_0 V_0 \\&\quad + (cv_{w^{2}v} )W_0 ^{2}V_0 +(cv_{E^{2}v} )E_0 ^{2}V_0 +(cv_{V^{3}} )V_0 ^{3}\\&\quad +(cv_{E^{3}} )E_0 ^{3}+(cv_{EV^{2}} )E_0 V_0 ^{2}+(cv_{EW^{2}} )E_0 W_0 ^{2} \\&\quad + (cv_{\ddot{V}W^{2}} )D_0^2 V_0 W_0 ^{2}+2(cv_{2\dot{V}\dot{W}W} )D_0 V_0 D_0 W_0 W_0\\&\quad +(cv_{r^{2}\ddot{V}} )r_0^2 D_0^2 V+(cv_{r\dot{r}\dot{V}} )r_0 D_0 r_0 D_0 V_0 \\&\quad + (cv_{r\ddot{r}V} )r_0 D_0^2 r_0 V_0 +(cv_{r^{2}V} )r_0 ^{2}V_0 \\&\quad +(cv_{\dot{r}^{2}V} )(D_0 r_0 )^{2}V_0+2(cv_{LV} ) \\&\quad + (V_0 ^{2}D_0^2 V_0 +V_0 (D_0 V_0 )^{2})2(cv_{LW} )\\&\quad \times (V_0 W_0 D_0^2 W_0 +V_0 (D_0 W_0 )^{2})\\&\quad +\frac{1}{2}\left( \int \limits _0^1 \phi _v (s)ds\right) (f_v \Omega _v^2 ) (e^{i\Omega _v T_0 }+e^{-i\Omega _v T_0 }), \end{aligned}$$
(5.11)
$$\begin{aligned}&(cw_1 )D_0^2 W_1 +(cw_3 )W_1 =-2D_0 D_1 W_0 -(cw_2 )D_0 W_0 \\&\quad +(cw_{n1} )r_0 D_0^2 W_0 +(cw_{n2} )E_0 V_0 \\&\quad + (cw_{n3} )D_0 E_0 D_0 V_0 +(cw_{n4} )E_0 ^{2}+(cw_{n5} )V_0 ^{2} \\&\quad +(cw_{n6} )D_0^2 r_0 W_0 -(cw_{n7} k_s )r_0 W_0 \\&\quad + (cw_{r^{2}\ddot{W}} )r_0 ^{2}D_0^2 W_0 +(cw_{r^{2}W} )r_0 ^{2}W_0 \\&\quad +(cv_{r\ddot{r}W} )r_0 D_0^2 r_0 W_0 +(cv_{\dot{r}^{2}W} )(D_0 r_0 )^{2}W_0 \\&\quad + (cw_{WV^{2}} )W_0 V_0 ^{2}+(cw_{W^{3}} )W_0 ^{3}\\&\quad +(cw_{W\dot{V}^{2}} )W_0 (D_0 V_0 )^{2}+(cw_{E^{2}W} )E_0 ^{2}W_0 \\&\quad + (cw_{EVW} )E_0 V_0 W_0 +2(cw_{LV} )(V_0 W_0 D_0^2 V_0 \\&\quad +W_0 (D_0 V_0 )^{2}) + 2(cw_{LW} )(W_0 ^{2}D_0^2 W_0 +W_0 (D_0 W_0)^{2}) \\&\quad +\frac{1}{2}\left( \int \limits _0^1 \phi _w (s)ds\right) (f_w \Omega _w^2 ) (e^{i\Omega _w T_0 }+e^{-i\Omega _w T_0 }), \end{aligned}$$
(5.12)
$$\begin{aligned}&(c\phi _1 )D_0^2 E_1 +(c\phi _3 )E_1 +(c\phi _4 )V_1 =-2D_0 D_1 E_0 \\&\quad -(c\phi _2 )D_0 E_0 +(c\phi _{n1} )V_0 W_0 +(c\phi _{n2} )E_0 W_0 \\&\quad + (c\phi _{n3} )D_0^2 V_0 W_0 +(c\phi _{n4} )D_0 V_0 D_0 W_0 \\&\quad +(c\phi _{E^{2}V} )E_0^2 V_0 +(c\phi _{V^{3}} )V_0 ^{3}+(c\phi _{EV^{2}} )E_0 V_0 ^{2} \\&\quad + (c\phi _{EW^{2}} )E_0 W_0 ^{2} \\&\quad +\frac{1}{2}\left( \int \limits _0^1 \phi _\phi (s)ds\right) (f_\phi \Omega _\phi ^2 ) (e^{i\Omega _\phi T_0 }+e^{-i\Omega _\phi T_0 }), \end{aligned}$$
(5.13)
$$\begin{aligned}&m_s D_0^2 r_1 +k_s r_1 -k_t D_0 q_1 =(cr_{n1} )V_0 D_0^2 V_0 \\&\quad +(cr_{n2} )(D_0 V_0 )^{2}+(cr_{n3} )W_0 D_0^2 W_0 \\&\quad +(cr_{n4} )(D_0 W_0 )^{2} +(cr_{rW^{2}} )r_0 W_0 ^{2}\\&\quad +(cr_{r\dot{V}^{2}} )(r_0 (D_0 V_0 )^{2}) +(cr_{r\dot{W}^{2}} )(r_0 (D_0 W_0 )^{2})\\&\quad -2m_s D_0 D_1 r_0 -k_t D_1 q_0 +(cr_{rW\ddot{W}} )(r_0 W_0 D_0^2 W_0 )\\&\quad +(cr_{rV\ddot{V}} )(r_0 V_0 D_0^2 V_0 ). \end{aligned}$$
(5.14)
$$\begin{aligned}&k_q D_0^2 q_1 +D_0 q_1 =-2k_q D_0 D_1 q_0 -D_1 q_0 -k_e D_0 r_0 , \end{aligned}$$
(5.15)
$$\begin{aligned}&\!\!\!H_{vj} (s,t)={v}''(s,t)\left\{ m_s \ddot{u}+m_s \ddot{r}\left( 1-\frac{{v}'^{2}}{2}+\frac{{w}'^{2}}{2}\right) \right. \nonumber \\&\qquad \left. -\,\,2m_s \dot{r}{\dot{v}}'{v}'+k_s r\left( 1-\frac{{v}'^{2}}{2}+\frac{{w}'^{2}}{2}\right) \right\} _{s=r(t)} \nonumber \\&\qquad -\,\,\left\{ m_s ({\dot{v}}'\dot{r})+m_s \ddot{r}{v}'+m_s \dot{r}(\dot{r}{v}''+{\dot{v}}') \right. \nonumber \\&\qquad \left. +k_s r({v}'+{v}'{w}'^{2}) \right\} \delta (s-r(t)) \end{aligned}$$
(8.1)
$$\begin{aligned}&\!\!\!H_{wj} (s,t)\!=\!{w}''(s,t)\!\left\{ m_s \ddot{u}+m_s \ddot{r}\left( \!1-\frac{{v}'^{2}}{2}+\frac{{w}'^{2}}{2}\right) \right. \nonumber \\&\qquad \left. -\,\,2m_s \dot{r}{\dot{v}}'{v}'+k_s r\left( 1-\frac{{v}'^{2}}{2}+\frac{{w}'^{2}}{2}\right) \right\} _{s=r(t)} \nonumber \\&\qquad -\,\,\left\{ m_s \dot{r}{\dot{w}}'-m_s \ddot{r}{w}'-m_s \dot{r}(\dot{r}{w}''+{\dot{w}}')\right. \nonumber \\&\qquad \left. -\,\,k_s r\left( {w}'+\frac{{v}'^{2}}{2}{w}'\right) \right\} \delta (s-r(t)) \end{aligned}$$
(8.2)
$$\begin{aligned}&H_r (t)=\left\{ -m_s \ddot{u}-2m_s \dot{u}{\dot{w}}'{w}'-m_s \ddot{v}{v}' \right. \nonumber \\&\qquad \left. -\,\,m_s \ddot{w}{w}'-k_s r{w}'^{2} \right\} _{s=r(t)} \end{aligned}$$
(8.3)
$$\begin{aligned}&\!\!\!cv_1 =\int \limits _0^1 {\phi _v^2 } (s)ds+J_\zeta \int \limits _0^1 {{\phi '}_v^2 } (s)ds +m_s \phi _v (r_e ),cv_2 \nonumber \\&\quad =c_v \int \limits _0^1 {\phi _v^2 } (s)ds,cv_3 =\beta _{33} \int \limits _0^1 {{\phi ''}_v^2 } (s)ds, \nonumber \\&\!\!\!cv_4 =\beta _{13} \int \limits _0^1 {\phi _\phi ^{\prime }} (s){\phi }''_v (s)ds,cv_{n1} \nonumber \\&\quad =-2m_s \phi _v (r_e ){\phi }'_v (r_e ), \nonumber \\&\!\!\!cv_{n2} =\{\phi _v \beta _{11} ({\phi }'_\phi {\phi }'_w )' -\phi _v (\beta _{22} -\beta _{33} )(\phi _\phi {\phi }''_w )' \nonumber \\&\quad -{\phi }'_v \beta _{11} ({\phi }'_\phi {\phi }'_w )+{\phi }'_v (\beta _{22} -\beta _{33} )(\phi _\phi {\phi }''_w )\}_{s=1} \nonumber \\&\!\!\!-\beta _{11} \int \limits _0^1 {\phi _v } ({\phi }'_\phi {\phi }'_w )''ds\nonumber \\&\quad +(\beta _{22} -\beta _{33} )\int \limits _0^1 {\phi _v } (\phi _\phi {\phi }''_w )''ds,cv_{n3} \nonumber \\&\quad =\{\phi _v \beta _{13} (2{\phi }''_v {\phi }'_w )\}_{s=1} -\beta _{13} \int \limits _0^1 {\phi _v } (2{\phi }''_v {\phi }'_w )''ds, \nonumber \\&\!\!\!cv_{n4} =\{-\phi _v J_\xi (\phi _\phi {\phi }'_w )\}_{s=1} \nonumber \\&\quad +J_\xi \int \limits _0^1 {\phi _v } (\phi _\phi {\phi }'_w )'ds,cv_{n5} =cv_{n4} , \nonumber \\&\!\!\!cv_{n6} =m_s \int \limits _0^1 {\phi _v } {\phi }''_v ds-m_s \phi _v (r_e ){\phi }'_v (r_e ),cv_{n7} \nonumber \\&\quad =-\int \limits _0^1 {\phi _v } {\phi }''_v ds+\phi _v (r_e ){\phi }'_v (r_e ),cv_{n8} \nonumber \\&\quad =-2m_s \phi _v (r_e ){\phi }'_v (r_e ), \end{aligned}$$
(8.4)
$$\begin{aligned}&\!\!\!cw_1 =\int \limits _0^1 {\phi _w^2 } (s)ds+J_\eta \int \limits _0^1 {{\phi '}_w^2 } (s)ds+m_s \phi _w (r_e ),cw_2 \nonumber \\&\quad =c_w \int \limits _0^1 {\phi _w^2 } (s)ds,cw_3 =\beta _{22} \int \limits _0^1 {{\phi ''}_w^2 } (s)ds, \nonumber \\&\!\!\!cw_{n1} =-2m_s \phi _w (r_e ){\phi }'_w (r_e ), \nonumber \\&\!\!\!cw_{n2} =\{\phi _w \beta _{11} ({\phi }'_\phi {\phi }''_v )-\phi _w (\beta _{22} -\beta _{33} )(\phi _\phi {\phi }''_v )'\nonumber \\&\quad +{\phi }'_w (\beta _{22} -\beta _{33} )(\phi _\phi {\phi }''_v )\}_{s=1} \nonumber \\&\!\!\!+\beta _{11} \int \limits _0^1 {\phi _w } ({\phi }'_\phi {\phi }''_v )'ds\nonumber \\&\quad +(\beta _{22} -\beta _{33} )\int \limits _0^1 {\phi _w } (\phi _\phi {\phi }''_v )''ds,cw_{n3} \nonumber \\&\quad =\{\phi _w J_\xi (\phi _\phi {\phi }'_v )\}_{s=1} -J_\xi \int \limits _0^1 {\phi _w } (\phi _\phi {\phi }'_v )'ds, \nonumber \\&\!\!\!cw_{n4} =\{\phi _w \beta _{13} (\phi _\phi {\phi }'_\phi )'-{\phi }'_w \beta _{13} \phi _\phi {\phi }'_\phi \}_{s=1} \nonumber \\&\quad -\beta _{13} \int \limits _0^1 {\phi _w } (\phi _\phi {\phi }'_\phi )''ds, \nonumber \\&\!\!\!cw_{n5} =\{-\phi _w \beta _{13} ({\phi }''_v )^{2}\}_{s=1}\nonumber \\&\quad +\beta _{13} \int \limits _0^1 {\phi _w ({\phi }''_v )'^{2}} ds,cw_{n6} \nonumber \\&\quad =m_s \int \limits _0^1 {\phi _w } {\phi }''_w ds+m_s \phi _w (r_e ){\phi }'_w (r_e ), \nonumber \\&\!\!\! cw_{n7} =-\int \limits _0^1 {\phi _w } {\phi }''_w ds-\phi _w (r_e ){\phi }'_w (r_e ),cv_{n8} \nonumber \\&\quad =-2m_s \phi _v (r_e ){\phi }'_v (r_e ), \end{aligned}$$
(8.5)
$$\begin{aligned}&\!\!\!c\phi _1 =J_\xi \int \limits _0^1 {\phi _\phi ^2 } (s)ds,c\phi _2 =c_\phi \int \limits _0^1 {\phi _\phi ^2 } (s)ds,c\phi _3 \nonumber \\&\quad =\beta _{11} \int \limits _0^1 {{\phi '}_\phi ^2 } (s)ds, \nonumber \\&\!\!\!c\phi _4 =\beta _{13} \int \limits _0^1 {{\phi '}_v^2 } (s)ds,c\phi _{n1} =\{-\phi _\phi \beta _{11} {\phi ''}_v {\phi '}_w \}_{s=1} \nonumber \\&\quad +\beta _{11} \int \limits _0^1 {\phi _\phi ({\phi ''}_v {\phi '}_w )'} ds+(\beta _{22} -\beta _{33} )\nonumber \\&\quad \int \limits _0^1 {\phi _\phi ({\phi ''}_v {\phi ''}_w )} ds, \nonumber \\&\!\!\!c\phi _{n2} =\{-\phi _\phi \beta _{13} (\phi _\phi {\phi }''_w )\}_{s=1} +\beta _{13} \int \limits _0^1 {\phi _\phi ^2 } {\phi }'''_w ds,c\phi _{n3} \nonumber \\&\quad =-J_\xi \int \limits _0^1 {\phi _\phi } {\phi }'_v {\phi }'_w ds,c\phi _{n4} =c\phi _{n3} , \end{aligned}$$
(8.6)
$$\begin{aligned}&\!\!\!cr_{n1} =m_s \left( \int \limits _0^s {{\phi '}_v^2 } (s)ds\right) _{s=r_e }\nonumber \\&\quad -m_s (\phi _v {\phi '}_v )_{s=r_e } ,cr_{n2} \nonumber \\&\quad =m_s \left( \int \limits _0^s {{\phi '}_v^2 } (s)ds\right) _{s=r_e } , \nonumber \\&\!\!\!cr_{n3} =m_s \left( \int \limits _0^s {{\phi '}_w^2 } (s)ds\right) _{s=r_e }\nonumber \\&\quad -m_s (\phi _w {\phi '}_w )_{s=r_e } ,cr_{n4} \nonumber \\&\quad =m_s \left( \int \limits _0^s {{\phi '}_w^2 } (s)ds\right) _{s=r_e } , \end{aligned}$$
(8.7)

Coefficients of nonlinear cubic terms:

$$\begin{aligned}&\!\!\!cv_{W^{2}V} =\{\phi _v \beta _{11} ({\phi '}_w^2 {\phi ''}_v )'+\phi _v \beta _{33} ({\phi '}_v ({\phi '}_w {\phi ''}_w )')\nonumber \\&\quad -{\phi '}_v \beta _{11} ({\phi ''}_v {\phi '}_w^2 )+{\phi '}_v (\beta _{22} -\beta _{33} ){\phi '}_v {\phi '}_w {\phi ''}_w \}_{s=1} \nonumber \\&\quad - \beta _{11} \int _0^1 {\phi _v } ({\phi ''}_v {\phi '}_w^2 )''ds\nonumber \\&\quad -\beta _{33} \int _0^1 {\phi _v } ({\phi '}_v ({\phi '}_w {\phi ''}_w )')'ds, \nonumber \\&\!\!\!cv_{E^{2}V} =\{\phi _v (\beta _{22} -\beta _{33} )(\phi _\phi ^2 {\phi }''_v )'\nonumber \\&\quad -{\phi }'_v (\beta _{22} -\beta _{33} )(\phi _\phi ^2 {\phi }''_v )\}_{s=1} \nonumber \\&\quad -(\beta _{22} -\beta _{33} )\int _0^1 {\phi _v } (\phi _\phi ^2 {\phi }''_v )''ds, \nonumber \\&\!\!\!cv_{V^{3}} =\{\phi _v \beta _{33} ({\phi }'_v ({\phi }'_v {\phi }''_v )')\}_{s=1}\nonumber \\&\quad -\beta _{33} \int _0^1 {\phi _v } ({\phi }'_v ({\phi }'_v {\phi }''_v )')'ds, \nonumber \\&\!\!\!cv_{E^{3}} =\{-\phi _v \beta _{13} (1/2)(\phi _\phi ^2 {\phi }'_\phi )'\nonumber \\&\quad +{\phi }'_v \beta _{13} (1/2)(\phi _\phi ^2 {\phi }'_\phi )\}_{s=1} \nonumber \\&\quad +\beta _{13} (1/2)\int _0^1 {\phi _v (\phi _\phi ^2 {\phi }'_\phi )''ds,} \nonumber \\&\!\!\!cv_{EV^{2}} =\{\phi _v \beta _{13} (1/2)({\phi '}_v^2 {\phi ''}_\phi ) \nonumber \\&\quad -{\phi '}_v \beta _{13} (1/2)({\phi '}_v^2 {\phi '}_\phi )\}_{s=1} \nonumber \\&\quad -\beta _{13} (1/2)\int _0^1 {\phi _v ({\phi ''}_\phi {\phi '}^{2}_v )'ds,} \nonumber \\&\!\!\!cv_{EW^{2}} =\{\phi _v \beta _{13} \phi _\phi ({\phi }'_w {\phi }''_w )'-{\phi }'_v \beta _{13} \phi _\phi {\phi }'_w {\phi }''_w \}_{s=1} \nonumber \\&\quad -\beta _{13} \int _0^1 {\phi _v (\phi _\phi ({\phi }'_w {\phi }''_w )')'ds} , \nonumber \\&\!\!\!cv_{\ddot{V}W^{2}} =\{-\phi _v J_\xi ({\phi '}_w^2 {\phi '}_v )\}_{s=1} \nonumber \\&\quad +J_\xi \int _0^1 {\phi _v ({\phi '}_w^2 {\phi '}_v )'ds,} cv_{2\dot{V}W\dot{W}} =cv_{\ddot{V}W^{2}} , \nonumber \\&\!\!\!cv_{r^{2}\ddot{V}} =-m_s ({\phi '}_v^2 )_{s=r_e } , cv_{r\dot{r}\dot{V}} \nonumber \\&\quad =-2m_s (\phi _v {\phi ''}_v +{\phi '}_v^2 )_{s=r_e } , cv_{r\ddot{r}V} =( cv_{r\dot{r}\dot{V}} /2), \nonumber \\&\!\!\!cv_{r^{2}V} =-k_s (\phi _v {\phi ''}_v +{\phi '}_v^2 )_{s=r_e } , cv_{\dot{r}^{2}V} \nonumber \\&\quad =-m_s (\phi _v {\phi ''}_v )_{s=r_e } , \nonumber \\&\!\!\!cv_{Lv} =\int _0^1 {\phi _v {\phi ''}_v } ds\left\{ -\frac{m_s }{2}\left( \int _0^s {{\phi '}_v^2 ds} \right) _{s=r_e } \right\} \nonumber \\&\quad -\frac{1}{2}\int _0^1 {\phi _v \left[ {\phi '}_v \int _1^s {\int _0^s {{\phi '}_v^2 dsds} } \right] 'ds,} \nonumber \\&\!\!\!cv_{Lw} =\int _0^1 {\phi _v {\phi ''}_v } ds\left\{ -\frac{m_s }{2}\left( \int _0^s {{\phi '}_w^2 ds} \right) _{s=r_e } \right\} \nonumber \\&\quad -\frac{1}{2}\int _0^1 {\phi _v \left[ {\phi '}_v \int _1^s {\int _0^s {{\phi '}_w^2 dsds} } \right] 'ds,} \end{aligned}$$
(8.8)
$$\begin{aligned}&\!\!\!cw_{r^{2}\ddot{W}} =-m_s ({\phi '}_w^2 )_{s=r_e } ,cw_{r^{2}W} \nonumber \\&\quad =k_s (\phi _w {\phi ''}_w +{\phi '}_w^2 )_{s=r_e } , cw_{r\ddot{r}W} =(\frac{m_s }{k_s })cw_{r^{2}W} , \nonumber \\&\!\!\!cw_{\dot{r}^{2}W} =m_s (\phi _w {\phi }''_w )_{s=r_e } , cw_{WV^{2}} \nonumber \\&\quad =\{-\phi _w \beta _{11} {\phi '}_w {\phi ''}_v^2 +\phi _w \beta _{33} {\phi '}_w ({\phi '}_v {\phi ''}_v )'\}_{s=1} \nonumber \\&\quad +\beta _{11} \int _0^1 \phi _w ({\phi '}_w {\phi ''}_v^2 )'ds\nonumber \\&\quad -\,\,\beta _{33} \int _0^1 \phi _w [ {\phi '}_w ({\phi }'_v {\phi }''_v )']'ds, \nonumber \\&\!\!\!cw_{W^{3}} =\{\phi _w \beta _{22} {\phi '}_w ({\phi '}_w {\phi ''}_w )'\}_{s=1}\nonumber \\&\quad -\beta _{22} \int _0^1 \phi _w [{\phi '}_w ({\phi '}_w {\phi ''}_w )']'ds, \nonumber \\&\!\!\!cw_{W\dot{V}^{2}} =\{\phi _w J_\xi ({\phi '}_w {\phi '}_v^2 )\}_{s=1} \!-\!J_\xi \!\!\int _0^1 {\phi _w ({\phi '}_w {\phi '}_v^2 )'ds,} \nonumber \\&\!\!\!cw_{E^{2}W} =\{-\phi _w (\beta _{22} -\beta _{33} )(\phi _\phi ^2 {\phi }''_w )'\nonumber \\&\quad +{\phi }'_w (\beta _{22} -\beta _{33} )(\phi _\phi ^2 {\phi }''_w )\}_{s=1} \nonumber \\&\quad +(\beta _{22} -\beta _{33} )\int _0^1 {\phi _w (\phi _\phi ^2 {\phi }''_w )''ds} , \nonumber \\&\!\!\!cw_{EVW} \!=\!\{\phi _w \beta _{13} {\phi }'_w (\phi _\phi {\phi }'_v )''\!-\!{\phi }'_w \beta _{13} {\phi }'_w (\phi _\phi {\phi }'_v )'\}_{s=1} \nonumber \\&\quad -\beta _{13} \int _0^1 {\phi _w [{\phi }'_w (\phi _\phi {\phi }'_v )''} ]'ds, \nonumber \\&\!\!\!cw_{Lv} =\int _0^1 {\phi _w {\phi ''}_w } ds\left\{ -\frac{m_s }{2}\left( \int _0^s {{\phi '}_v^2 ds} \right) _{s=r_e } \right\} \nonumber \\&\quad -\frac{1}{2}\int _0^1 {\phi _w \left[ {\phi '}_w \int _1^s {\int _0^s {{\phi '}_v^2 dsds} } \right] 'ds,} \nonumber \\&\!\!\!cw_{Lw} =\int _0^1 {\phi _w {\phi }''_w } ds\left\{ -\frac{m_s }{2}\left( \int _0^s {{\phi '}_w^2 ds} \right) _{s=r_e } \right\} \nonumber \\&\quad -\frac{1}{2}\int _0^1 {\phi _w \left[ {\phi '}_w \int _1^s {\int _0^s {{\phi '}_w^2 dsds} } \right] 'ds,} \end{aligned}$$
(8.9)
$$\begin{aligned}&\!\!\!c\phi _{E^{2}V} =\{\phi _\phi \frac{1}{2}\beta _{13} (\phi _\phi ^2 {\phi }''_v )\}_{s=1} \nonumber \\&\quad -\frac{1}{2}\beta _{13} \int _0^1 {\phi _\phi } (\phi _\phi ^2 {\phi }'''_v )ds, \nonumber \\&\!\!\!c\phi _{V^{3}} =\{-\phi _\phi \frac{1}{2}\beta _{13} ({\phi '}_v^2 {\phi ''}_v )\}_{s=1}\nonumber \\&\quad +\frac{1}{2}\beta _{13} \int _0^1 {\phi _\phi } ({\phi '}_v^2 {\phi ''}_v )'ds, \nonumber \\&\!\!\!c\phi _{VW^{2}} =\left\{ -\phi _\phi \frac{1}{2}\beta _{13} ({\phi }'_v {\phi }'_w {\phi }''_w )\right\} _{s=1} \nonumber \\&\quad +\beta _{13} \int _0^1 {\phi _\phi } {\phi }'_v ({\phi }'_w {\phi }''_w )'ds, \nonumber \\&\!\!\!c\phi _{EV^{2}} =-(\beta _{22} -\beta _{33} )\int _0^1 {\phi _\phi ^2 {\phi ''}_v^2 ds, } c\phi _{EW^{2}} \nonumber \\&\quad =(\beta _{22} -\beta _{33} )\int _0^1 {\phi _\phi ^2 {\phi ''}_w^2 ds, } \end{aligned}$$
(8.10)
$$\begin{aligned}&\!\!\!cr_{rW^{2}} =-k_s ({\phi '}_w^2 )_{s=r_e } , cr_{r\dot{V}^{2}} =m_s ({\phi '}_v^2 )_{s=r_e } ,\nonumber \\&\quad cr_{r\dot{W}^{2}} =m_s ({\phi '}_v^2 )_{s=r_e } , \nonumber \\&\!\!\!cr_{rV\ddot{V}} =-m_s (\phi _v {\phi ''}_v )_{s=r_e } ,cr_{rW\ddot{W}} \nonumber \\&\quad =-m_s (\phi _w {\phi ''}_w )_{s=r_e } , \end{aligned}$$
(8.11)

Coefficients of modulation equations:

$$\begin{aligned}&\!\!\!\Gamma _1 =-cv_1 -\alpha c\phi _1 , \nonumber \\&\!\!\!\Gamma _2 =\frac{(cv_2 +\alpha c\phi _2 )}{2}, \nonumber \\&\!\!\!\Gamma _3 =-\omega ^{2}cv_{r^{2}\ddot{V}} -\omega _r^2 cv_{r\ddot{r}V} +cv_{r^{2}V} +\omega _r^2 cv_{\dot{r}^{2}V} , \nonumber \\&\!\!\!\Gamma _4 =cv_{W^{2}V} +\alpha cv_{EW^{2}} -\omega ^{2}cv_{\ddot{V}W^{2}} \nonumber \\&\quad +c\phi _{VW^{2}} +\alpha c\phi _{EW^{2}} , \nonumber \\&\!\!\!\Gamma _5 =\alpha ^{2}cv_{E^{2}V} +cv_{V^{3}} +\alpha ^{3}cv_{E^{3}} +\alpha cv_{EV^{2}}\nonumber \\&\quad -(4/3)\omega ^{2}cv_{LV} +\alpha ^{2}c\phi _{E^{2}V} +c\phi _{V^{3}} +\alpha c\phi _{EV^{2}} , \nonumber \\&\!\!\!\Gamma _6 =-\omega ^{2}cv_{r^{2}\ddot{V}} +\omega \omega _r cv_{r\dot{r}\dot{V}} \nonumber \\&\quad -\omega _r^2 cv_{r\ddot{r}V} +cv_{r^{2}V} -\omega _r^2 cv_{\dot{r}^{2}V} , \nonumber \\&\!\!\!\Gamma _7 =-\omega ^{2}cv_{n1} -\omega _r^2 cv_{n6} -k_s cv_{n7} +\omega \omega _r cv_{n8} , \nonumber \\&\!\!\!\Gamma _8 =(1/2)f_v \Omega _v^2 \int \limits _0^1 {\phi _v (s)ds,} \end{aligned}$$
(8.12)
$$\begin{aligned}&\!\!\!\Lambda _1 =-cw_1 , \Lambda _2 =\frac{(cw_2 )}{2}, \Lambda _3 =-\rho ^{2}cw_{r^{2}\ddot{W}} \nonumber \\&\quad +cw_{r^{2}W} -\omega _r^2 cw_{r\ddot{r}W} +\omega _r^2 cw_{\dot{r}^{2}W} , \nonumber \\&\!\!\!\Lambda _4 =cw_{WV^{2}} +\omega ^{2}cw_{W\dot{V}^{2}} +\alpha ^{2}cw_{E^{2}W} \nonumber \\&\quad +\alpha cw_{EVW} , \Lambda _5 =cw_{W^{3}} -(4/3)\rho ^{2}cw_{LW} , \nonumber \\&\!\!\!\Lambda _6 =-\rho ^{2}cw_{r^{2}\ddot{W}} +cw_{r^{2}W} -\omega _r^2 cw_{r\ddot{r}W} \nonumber \\&\quad -\omega _r^2 cw_{\dot{r}^{2}W} , \Lambda _7 =-\rho ^{2}cw_{n1} -\omega _r^2 cw_{n6} -k_s cw_{n7} , \nonumber \\&\!\!\!\Lambda _8 =\frac{f_w \Omega _w^2 }{2}\int \limits _0^1 {\phi _w (s)ds,} \end{aligned}$$
(8.13)
$$\begin{aligned}&\!\!\!\mathrm{X}_1 =-m_s , \mathrm{X}_2 =\omega ^{2}cr_{r\dot{V}^{2}} -\omega ^{2}cr_{rV\ddot{V}} , \mathrm{X}_3 \nonumber \\&\quad =\rho ^{2}cr_{r\dot{W}^{2}} +cr_{rW^{2}} -\rho ^{2}cr_{rW\ddot{W}} , \nonumber \\&\!\!\!\mathrm{X}_4 =-\omega ^{2}cr_{r\dot{V}^{2}} -\omega ^{2}cr_{rV\ddot{V}} , \mathrm{X}_5 \nonumber \\&\quad =-\omega ^{2}cr_{n1} -\omega ^{2}cr_{n2} , \nonumber \\&\!\!\!\mathrm{X}_6 =-\rho ^{2}cr_{r\dot{W}^{2}} +cr_{rW^{2}} -\rho ^{2}cr_{rW\ddot{W}} , \mathrm{X}_7 \nonumber \\&\quad =-\rho ^{2}cr_{n3} -\rho ^{2}cr_{n4} , \end{aligned}$$
(8.14)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karimpour, H., Eftekhari, M. Exploiting internal resonance for vibration suppression and energy harvesting from structures using an inner mounted oscillator. Nonlinear Dyn 77, 699–727 (2014). https://doi.org/10.1007/s11071-014-1332-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1332-2

Keywords

Navigation