Skip to main content
Log in

Zero–Hopf bifurcation in a hyperchaotic Lorenz system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We characterize the zero–Hopf bifurcation at the singular points of a parameter codimension four hyperchaotic Lorenz system. Using averaging theory, we find sufficient conditions so that at the bifurcation points two periodic solutions emerge and describe the stability of these orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barboza, R.: Dynamics of a hyperchaotic Lorenz system. Int. J. Bifurc. Chaos 17, 4285–4294 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bogoliubov, N.N.: On Some Statistical Methods in Mathematical Physics. Izv. Akad. Nauk Ukr. SSR, Kiev (1945)

    Google Scholar 

  3. Bogoliubov, N.N., Krylov, N.: The Application of Methods of Nonlinear Mechanics in the Theory of Stationary Oscillations. Ukrainian Acad. Sci, Kiev (1934). Publ. 8

    Google Scholar 

  4. Buică, A., Françoise, J.P., Llibre, J.: Periodic solutions of nonlinear periodic differential systems with a small parameter. Commun. Pure Appl. Anal. 6, 103–111 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Champneys, A.R., Kirk, V.: The entwined wiggling of homoclinic curves emerging from saddle-node/Hopf instabilities. Physica D 195, 77–105 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. El-Dessoky, M.M., Saleh, E.: Generalized projective synchronization for different hyperchaotic dynamical systems. Discrete Dyn. Nat. Soc. 2011, 437156 (2011)

    Article  MathSciNet  Google Scholar 

  7. Fatou, P.: Sur le mouvement d’un systàme soumis à des forces à courte période. Bull. Soc. Math. Fr. 56, 98–139 (1928)

    MATH  MathSciNet  Google Scholar 

  8. Guckenheimer, J.: On a codimension two bifurcation. In: Lecture Notes in Math., vol. 898, pp. 99–142. Springer, Berlin (1980)

    Google Scholar 

  9. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. In: Applied Mathematical Sciences, vol. 42. Springer, New York (1990) revised and corrected reprint of the 1983 original

    Google Scholar 

  10. Fu, G.: Robust adaptive modified function projective synchronization of different hyperchaotic systems subject to external disturbance. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2602–2608 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Haken, H.: Analogy between higher instabilities in fluids and lasers. Phys. Lett. A 53, 77–78 (1975)

    Article  Google Scholar 

  12. Han, M.: Existence of periodic orbits and invariant tori in codimension two bifurcations of three dimensional systems. J. Syst. Sci. Math. Sci. 18, 403–409 (1998)

    MATH  Google Scholar 

  13. Huang, J.: Chaos synchronization between two novel different hyperchaotic systems with unknown parameters. Nonlinear Anal. 69, 4174–4181 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jia, Q.: Hyperchaos generated from the Lorenz chaotic system and its control. Phys. Lett. A 366, 217–222 (2007)

    Article  MATH  Google Scholar 

  15. Knobloch, E.: Chaos in the segmented disc dynamo. Phys. Lett. A 82, 439–440 (1981)

    Article  MathSciNet  Google Scholar 

  16. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  17. Li, H., Wang, M.: Hopf bifurcation analysis in a Lorenz-type system. Nonlinear Dyn. 71, 235–240 (2013)

    Article  MATH  Google Scholar 

  18. García, I.A., Llibre, J., Maza, S.: Periodic orbits and their stability in the Rössler prototype-4 system. Phys. Lett. A 376, 2234–2237 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  20. Malkin, I.G.: Some Problems of the Theory of Nonlinear Oscillations. Gosudarstv. Izdat. Tehn.-Teor. Lit, Moscow (1956) (in Russian)

    MATH  Google Scholar 

  21. Roseau, M.: Vibrations Non Linéaires et Théorie de la Stabilité. In: Springer Tracts in Natural Philosophy, vol. 8. Springer, Berlin–New York (1966) (in French)

    Google Scholar 

  22. Sanders, J., Verhulst, F., Murdock, J.: Averaging Method in Nonlinear Dynamical Systems, 2nd edn. Applied Mathematical Sciences, vol. 59. Springer, New York (2007)

    Google Scholar 

  23. Scheurle, J., Marsden, J.: Bifurcation to quasi-periodic tori in the interaction of steady state and Hopf bifurcations. SIAM J. Math. Anal. 15, 1055–1074 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yu, S., Lu, J., Yu, X., Chen, G.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Syst. I, Regul. Pap. 59(5), 1015–1028 (2012)

    Article  MathSciNet  Google Scholar 

  25. Sudheer, K.S., Sabir, M.: Adaptive modified function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lu system with uncertain parameters. Phys. Lett. A 373, 3743–3748 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Universitext. Springer, Berlin (1991)

    Google Scholar 

  27. Wang, X., Wang, M.: A hyperchaos generated from Lorenz system. Physica A 387, 3751–3758 (2008)

    Article  MathSciNet  Google Scholar 

  28. Shi, X., Wang, W., Liu, Q.: Synchronization of noise perturbed hyperchaotic Lorenz time-delay system via a single controller with one variable. Int. J. Nonlinear Sci. 14(1), 31–37 (2012)

    MathSciNet  Google Scholar 

  29. Shi, X., Wang, Z.: The alternating between complete synchronization and hybrid synchronization of hyperchaotic Lorenz system with time delay. Nonlinear Dyn. 69(3), 1177–1190 (2012)

    Article  MATH  Google Scholar 

  30. Shi, X., Wang, Z.: A single adaptive controller with one variable for synchronizing two identical time delay hyperchaotic Lorenz systems with mismatched parameters. Nonlinear Dyn. 69(1–2), 117–125 (2012)

    Article  MATH  Google Scholar 

  31. Yang, C., Taoa, C.H., Wang, P.: Comparison of feedback control methods for a hyperchaotic Lorenz system. Phys. Lett. A 374, 729–732 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Chai, Y., Yi, C., Liping, W.: Ranchao inverse projective synchronization between two different hyperchaotic systems with fractional order. J. Appl. Math. 2012, 762807 (2012)

    Google Scholar 

  33. Zhu, C.: Controlling hyperchaos in hyperchaotic Lorenz system using feedback controllers. Appl. Math. Comput. 216, 3126–3132 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author is partially supported by a MINECO/ FEDER grant number MTM2008-03437, by an AGAUR grant number 2009-SGR-410, by ICREA Academia and by FP7-PEOPLE-2012-IRSES 316338 and 318999. The first and third authors were partially supported by a NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Stoica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cid-Montiel, L., Llibre, J. & Stoica, C. Zero–Hopf bifurcation in a hyperchaotic Lorenz system. Nonlinear Dyn 75, 561–566 (2014). https://doi.org/10.1007/s11071-013-1085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1085-3

Keywords

Navigation