Skip to main content
Log in

Multiple scales and normal forms in a ring of delay coupled oscillators with application to chaotic Hindmarsh–Rose neurons

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the appearance and stability of spatiotemporal periodic patterns like phase-locked oscillations, mirror-reflecting waves, standing waves, in-phase or antiphase oscillations, and coexistence of multiple patterns, in a ring of bidirectionally delay coupled oscillators. Hopf bifurcation, Hopf–Hopf bifurcation, and the equivariant Hopf bifurcation are studied in the viewpoint of normal forms obtained by using the method of multiple scales which is a kind of perturbation technique, thus a clear bifurcation scenario is depicted. We find time delay significantly affects the dynamics and induces rich spatiotemporal patterns. With the help of the unfolding system near Hopf–Hopf bifurcation, it is confirmed in some regions two kinds of stable oscillations may coexist. These phenomena are shown for the delay coupled limit cycle oscillators as well as for the delay coupled chaotic Hindmarsh–Rose neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  2. Song, Y., Wei, J., Yuan, Y.: Stability switches and Hopf bifurcations in a pair of delay-coupled oscillators. J. Nonlinear Sci. 17, 145–166 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, H., Sanjuán, M.A.F.: A mechanism for elliptic-like bursting and synchronization of bursts in a map-based neuron network. Cogn. Process. 10, 23–31 (2009)

    Article  Google Scholar 

  4. Ibarz, B., Cao, H., Sanjuán, M.A.F.: Bursting regimes in map-based neuron models coupled through fast threshold modulation. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 77, 051918 (2008)

    Article  Google Scholar 

  5. Wirkus, S., Rand, R.: The dynamics of two coupled van der Pol oscillators with delay coupling. Nonlinear Dyn. 20, 205–221 (2002)

    Article  MathSciNet  Google Scholar 

  6. Song, Y.: Hopf bifurcation and spatio-temporal patterns in delay-coupled van der Pol oscillators. Nonlinear Dyn. 63, 223–237 (2011)

    Article  MATH  Google Scholar 

  7. Schuster, H., Wagner, P.: Mutual entrainment of two limit cycle oscillators with time delayed coupling. Prog. Theor. Phys. 81, 939 (1989)

    Article  MathSciNet  Google Scholar 

  8. Kim, S., Park, S.H., Ryu, C.S.: Multistability in coupled oscillator systems with time delay. Phys. Rev. Lett. 79, 2911 (1997)

    Article  Google Scholar 

  9. Heil, T., Fischer, I., Elsässer, W., Mulet, J., Mirasso, C.R.: Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers. Phys. Rev. Lett. 86, 795 (2001)

    Article  Google Scholar 

  10. Reddy, D.V.R., Sen, A., Johnston, G.L.: Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett. 80, 5109 (1998)

    Article  Google Scholar 

  11. Yanchuk, S., Wolfrum, M.: Destabilization patterns in chains of coupled oscillators. Phys. Rev. E 77, 026212 (2008)

    Article  MathSciNet  Google Scholar 

  12. Perlikowski, P., Yanchuk, S., Popovych, O.V., Tass, P.A.: Periodic patterns in a ring of delay-coupled oscillators. Phys. Rev. E 82, 036208 (2010)

    Article  MathSciNet  Google Scholar 

  13. Takamatsu, A., Tanaka, R., Yamada, H., Nakagaki, T., Fujii, T., Endo, I.: Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum plasmodial slime mold. Phys. Rev. Lett. 87, 078102 (2001)

    Article  Google Scholar 

  14. Woafo, P., Kadji, H.G.E.: Synchronized states in a ring of mutually coupled self-sustained electrical oscillators. Phys. Rev. E 69, 046206 (2004)

    Article  Google Scholar 

  15. Bonnin, M.: Waves and patterns in ring lattices with delays. Physica D 238, 77–87 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Orosz, G., Stépán, G.: Hopf bifurcation calculations in delayed systems with translational symmetry. J. Nonlinear Sci. 14, 505–528 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Orosz, G., Wilson, R.E., Krauskopf, B.: Global bifurcation investigation of an optimal velocity traffic model with driver reaction time. Phys. Rev. E 70, 026207 (2004)

    Article  MathSciNet  Google Scholar 

  18. Golubitsky, M., Stewart, I., Buono, P., Collins, J.: Symmetry in locomotor central pattern generators and animal gaits. Nature 401, 693 (1999)

    Article  Google Scholar 

  19. Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., Vaadia, E.: Physiological aspects of information processing in the basal ganglia of normal and Parkinsonian primates. Trends Neurosci. 21, 32 (1998)

    Article  Google Scholar 

  20. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, Vol. II. Springer, New York (1988)

    Book  MATH  Google Scholar 

  21. Krawcewicz, W., Vivi, P., Wu, J.: Computation formulae of an equivariant degree with applications to symmetric bifurcations. Nonlinear Stud. 4, 89–119 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Krawcewicz, W., Wu, J.: Theory and applications of Hopf bifurcations in symmetric functional–differential equations. Nonlinear Anal. 35, 845–870 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, J.: Symmetric functional–differential equations and neural networks with memory. Trans. Am. Math. Soc. 350, 4799–4838 (1998)

    Article  MATH  Google Scholar 

  24. Wu, J., Faria, T., Huang, Y.: Synchronization and stable phase-locking in a network of neurons with memory. Math. Comput. Model. 30, 117–138 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo, S., Huang, L.: Hopf bifurcating periodic orbits in a ring of neurons with delays. Physica D 183, 19–44 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yuan, Y., Campbell, S.A.: Stability and synchronization of a ring of identical cells with delayed coupling. J. Dyn. Differ. Equ. 16, 709–744 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Campbell, S.A., Yuan, Y., Bungay, S.D.: Equivariant Hopf bifurcation in a ring of identical cells with delayed coupling. Nonlinearity 18, 2827–2846 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, C., Zheng, B., Wang, L.: Multiple Hopf bifurcations of three coupled van der pol oscillators with delay. Appl. Math. Comput. 217, 7155–7166 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shu, H., Wei, J.: Bifurcation analysis in a discrete BAM network model with delays. J. Differ. Equ. Appl. 17, 69–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wei, J., Jiang, W.: Stability and bifurcation analysis in Van der Pol’s oscillator with delayed feedback. J. Sound Vib. 283, 801–819 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hale, J., Lunel, S.: Introduction to Functional Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  32. Hassard, B., Kazarinoff, N.D., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge Univ. Press, Cambridge (1981)

    MATH  Google Scholar 

  33. Faria, T., Magalhaes, L.: Normal forms for retarded functional differential equation with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122, 181–200 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  35. Yu, P.: Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales. Nonlinear Dyn. 27, 19–53 (2002)

    Article  MATH  Google Scholar 

  36. Dessi, D., Mastroddi, F., Morino, L.: A fifth-order multiple-scale solution for Hopf bifurcations. Comput. Struct. 82, 2723–2731 (2004)

    Article  MathSciNet  Google Scholar 

  37. Das, S.L., Chatterjee, A.: Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dyn. 30, 323–335 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nayfeh, A.H.: Order reduction of retarded nonlinear systems—the method of multiple scales versus center-manifold reduction. Nonlinear Dyn. 51, 483–550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, H., Jiang, W.: Hopf-pitchfork bifurcation in van der Pol’s oscillator with nonlinear delayed feedback. J. Math. Anal. Appl. 368, 9–18 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ma, S., Lu, Q., Feng, Z.: Double Hopf bifurcation for van der Pol–Duffing oscillator with parametric delay feedback control. J. Math. Anal. Appl. 338, 993–1007 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yu, P., Yuan, Y., Xu, J.: Study of double Hopf bifurcation and chaos for an oscillator with time delayed feedback. Commun. Nonlinear Sci. Numer. Simul. 7, 69–91 (2002)

    Article  MathSciNet  Google Scholar 

  42. Buono, P., Bélair, J.: Restrictions and unfolding of double Hopf bifurcation in functional differential equations. J. Differ. Equ. 189, 234–266 (2003)

    Article  MATH  Google Scholar 

  43. La Rosa, M., Rabinovich, M.I., Huerta, R., Abarbanel, H.D.I., Fortuna, L.: Slow regularization through chaotic oscillation transfer in an unidirectional chain of Hindmarsh–Rose models. Phys. Lett. A 266, 88–93 (2000)

    Article  Google Scholar 

  44. Innocenti, G., Morelli, A., Genesio, R., Torcini, A.: Dynamical phases of the Hindmarsh–Rose neuronal model: studies of the transition from bursting to spiking chaos. Chaos 17, 043128 (2007)

    Article  MathSciNet  Google Scholar 

  45. Rosenblum, M., Pikovsky, A.: Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys. Rev. E 70, 041904 (2004)

    Article  MathSciNet  Google Scholar 

  46. Niu, B., Wei, J.: Stability and bifurcation analysis in an amplitude equation with delayed feedback. Chaos Solitons Fractals 37, 1362–1371 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1980)

    Google Scholar 

  48. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  49. Buono, P.L., LeBlanc, V.G.: Equivariant versal unfoldings for linear retarded functional differential equations. Discrete Contin. Dyn. Syst. 12, 283–302 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the editors and the reviewers for the helpful comments. This work is supported in part by NNSF of China (No. 11031002), by the Heilongjiang Provincial Natural Science Foundation (No. A200806), and by the Fund of Education Department of Heilongjiang Province (No. 12521085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Jiang, W. & Niu, B. Multiple scales and normal forms in a ring of delay coupled oscillators with application to chaotic Hindmarsh–Rose neurons. Nonlinear Dyn 71, 515–529 (2013). https://doi.org/10.1007/s11071-012-0678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0678-6

Keywords

Navigation