Skip to main content
Log in

Dynamics of a close-loop controlled MEMS resonator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of a close-loop electrostatic MEMS resonator, proposed as a platform for ultra sensitive mass sensors, is investigated. The parameter space of the resonator actuation voltage is investigated to determine the optimal operating regions. Bifurcation diagrams of the resonator response are obtained at five different actuation voltage levels. The resonator exhibits bi-stability with two coexisting stable equilibrium points located inside a lower and an upper potential wells. Steady-state chaotic attractors develop inside each of the potential wells and around both wells. The optimal region in the parameter space for mass sensing purposes is determined. In that region, steady-state chaotic attractors develop and spend most of the time in the safe lower well while occasionally visiting the upper well. The robustness of the chaotic attractors in that region is demonstrated by studying their basins of attraction. Further, regions of large dynamic amplification are also identified in the parameter space. In these regions, the resonator can be used as an efficient long-stroke actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lang, H.P., Berger, R., Battiston, F., Ramseyer, J.P., Meyer, E., Andreoli, C., Brugger, J., Vettiger, P., Despont, M., Mezzacasa, T., Scandella, L., Güntherodt, H.-J., Gerber, Ch., Gimzewski, J.K.: A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors. Appl. Phys. A, Mater. Sci. Process. 66, 61–64 (1998)

    Article  Google Scholar 

  2. Cherian, S., Gupta, R.K., Mullin, B.C., Thundat, T.: Detection of heavy metal ions using protein-functionalized microcantilever sensors. Biosens. Bioelectron. 19(5), 411–416 (2003)

    Article  Google Scholar 

  3. Wachter, E.A., Thundat, T.: Micromechanical sensors for chemical and physical measurements. Rev. Sci. Instrum. 66, 3662 (1995)

    Article  Google Scholar 

  4. Zhang, W., Baskaran, R., Turner, K.L.: Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor. Sens. Actuators A, Phys. 102(1–2), 139–150 (2002)

    Article  Google Scholar 

  5. Khater, M., Abdel-Rahman, E., Nayfeh, A.: A mass sensing technique for electrostatically-actuated mems. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME 2009, San Diego, California, USA (2009)

    Google Scholar 

  6. Spletzer, M., Raman, A., Sumali, H., Sullivan, J.P.: Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays. Appl. Phys. Lett. 92, 114102 (2008)

    Article  Google Scholar 

  7. Yin, S.H., Epureanu, B.I.: Experimental enhanced nonlinear dynamics and identification of attractor morphing modes for damage detection. J. Vib. Acoust. 129, 763 (2007)

    Article  Google Scholar 

  8. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books, New York (2001)

    Google Scholar 

  9. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  10. Epureanu, B.I., Yin, S.H., Dowell, E.H.: Enhanced nonlinear dynamics for accurate identification of stiffness loss in a thermo-shielding panel. Nonlinear Dyn. 39(1), 197–211 (2005)

    Article  MATH  Google Scholar 

  11. Ghafari, S.H., Golnaraghi, F., Ismail, F.: Effect of localized faults on chaotic vibration of rolling element bearings. Nonlinear Dyn. 53(4), 287–301 (2008)

    Article  MATH  Google Scholar 

  12. Wu, Y.T., Shyu, K.K., Chen, T.R., Guo, W.Y.: Using three-dimensional fractal dimension to analyze the complexity of fetal cortical surface from magnetic resonance images. Nonlinear Dyn., 1–8 (2009)

  13. Bienstman, J., Vandewalle, J., Puers, R.: The autonomous impact resonator: a new operating principle for a silicon resonant strain gauge. Sens. Actuators A, Phys. 66(1–3), 40–49 (1998)

    Article  Google Scholar 

  14. Wang, Y.C., Adams, S.G., Thorp, J.S., MacDonald, N.C., Hartwell, P., Bertsch, F.: Chaos in MEMS, parameter estimation and its potential application. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 45(10), 1013–1020 (1998)

    Article  Google Scholar 

  15. DeMartini, B.E., Butterfield, H.E., Moehlis, J., Turner, K.L.: Chaos for a microelectromechanical oscillator governed by the nonlinear Mathieu equation. J. Microelectromech. Syst. 16(6), 1314–1323 (2007)

    Article  Google Scholar 

  16. De, S.K., Aluru, N.R.: Complex oscillations and chaos in electrostatic microelectromechanical systems under superharmonic excitations. Phys. Rev. Lett. 94(20), 204101 (2005)

    Article  Google Scholar 

  17. Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S., El-Borgi, S.: Dynamics and global stability of beam-based electrostatic microactuators. J. Vib. Control, 1–4 (2010)

  18. Liu, S., Davidson, A., Lin, Q.: Simulation studies on nonlinear dynamics and chaos in a MEMS cantilever control system. J. Micromech. Microeng. 14(7), 1064–1073 (2004)

    Article  Google Scholar 

  19. Lu, M.S.C., Fedder, G.K.: Position control of parallel-plate microactuators for probe-based data storage. J. Microelectromech. Syst. 13(5), 759–769 (2004)

    Article  Google Scholar 

  20. Towfighian, S., Heppler, G.R., Abdel-Rahman, E.M.: Analysis of a chaotic electrostatic micro-oscillator. J. Comput. Nonlinear Dyn. 6, 011001 (2011)

    Article  Google Scholar 

  21. Towfighian, S., Seleim, A., Abdel-Rahman, E.M., Heppler, G.R.: A large-stroke electrostatic micro-actuator. J. Micromech. Microeng. 21, 075023 (2011)

    Article  Google Scholar 

  22. Senturia, S.D.: Microsystem Design. Kluwer Academic, Norwell (2001)

    Google Scholar 

  23. Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S., El-Borgi, S.: Nonlinear analysis of MEMS electrostatic microactuators: primary and secondary resonances of the first mode. J. Vib. Control 16(9), 1321–1349 (2010)

    Article  MathSciNet  Google Scholar 

  24. Simoyi, R.H., Wolf, A., Swinney, H.L.: One-dimensional dynamics in a multicomponent chemical reaction. Phys. Rev. Lett. 49(4), 245–248 (1982)

    Article  MathSciNet  Google Scholar 

  25. Metropolis, N., Stein, M.L., Stein, P.R.: Finite limit sets for transformations on the unit interval. J. Comb. Theory 15, 25–43 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Carnahan, B., Luther, H.A., Wilkes, J.O.: Applied Numerical Methods. Wiley, New York (1969)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulrahman Seleim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seleim, A., Towfighian, S., Delande, E. et al. Dynamics of a close-loop controlled MEMS resonator. Nonlinear Dyn 69, 615–633 (2012). https://doi.org/10.1007/s11071-011-0292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0292-z

Keywords

Navigation