Skip to main content
Log in

A quantitative approach for the evaluation of rockfall risk on buildings

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

A quantitative rockfall risk analysis at local scale is a complex and difficult task because it should consider both the randomness in the natural phenomenon and the variability of the response of the elements at risk. In engineering systems, such difficulties can be tackled with logical trees. In particular, event trees allow the determination of a set of outcomes of a given event in a probabilistic manner. Following recent publications on the estimation of rockfall risk on infrastructures (roads) by means of the event tree approach, a novel framework for the quantitative evaluation of the effects of the impact of a falling rock block on a building is presented. The method considers the occurrence of a given rockfall event, the kinetic energy of the falling block, the structural response of the impacted elements and the possibility of damage propagation within the building. An example is proposed to show the capabilities of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agliardi F, Crosta GB, Frattini P (2009) Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques. Nat Hazards Earth Syst Sci 9:1059–1073. doi:10.5194/nhess-9-1059-2009

    Article  Google Scholar 

  • Althuwaynee OF, Pradhan B, Park HJ, Lee JH (2014) A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides 11:1063–1078. doi:10.1007/s10346-014-0466-0

    Article  Google Scholar 

  • Bancroft R, Allison B (1997) Working adjacent to areas possibly containing explosive atmospheres. In: The process and findings of the MIP 10 Committee. Queensland Mining Industry Health and Safety Conference Proceedings

  • Bell R, Glade T (2004) Quantitative risk analysis for landslides: examples from Bìldudalur, NW-Iceland. Nat Hazards Earth Syst Sci 4:117–131

    Article  Google Scholar 

  • Bertrand D, Kassem F, Delhomme F, Limam A (2015) Reliability analysis of an RC member impacted by a rockfall using a nonlinear SDOF model. Eng Struct 89:93–102

    Article  Google Scholar 

  • Big-Alabo A, Harrison P, Cartmell MP (2015) Contact model for elastoplastic analysis of half-space indentation by a spherical impactor. Comput Struct 151:20–29

    Article  Google Scholar 

  • Budetta P, De Luca C, Nappi M (2016) Quantitative rockfall risk assessment for an important road by means of the rockfall risk management (RO.MA.) method. Bull Eng Geol Environ 75:1377–1397. doi:10.1007/s10064-015-0798-6

    Article  Google Scholar 

  • CEN (2006) EN1991-1-7:2006 Eurocode 1—actions on structures. Part 1-7: General actions—accidental actions, Comité Européen de Normalisation, Bruxelles

  • Chai B, Tang Z, Zhang A, Du J, Su H, Yi H (2015) An uncertainty method for probabilistic analysis of buildings impacted by rockfall in a limestone quarry in Fengshan, Southwestern China. Rock Mech Rock Eng 48:1981–1996. doi:10.1007/s00603-014-0682-x

    Article  Google Scholar 

  • Corominas J, Copons R, Moya J, Vilaplana JM, Altimir J, Amigò J (2005) Quantitative assessment of the residual risk in a rockfall protected area. Landslides 2:343–357

    Article  Google Scholar 

  • Corominas J, Van Westen C, Frattini P, Cascini L, Malet J-P, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith TD (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263. doi:10.1007/s10064-013-0538-8

    Google Scholar 

  • Curtin WG, Shaw G, Beck JK, Bray WA, Easterbrook D (2008) Structural masonry designers’ manual. Wiley, London

    Google Scholar 

  • Danaher B (1995) Using fault trees and event trees to manage risk. Retrieved at: http://www.qrc.org.au/conference/_dbase_upl/1995_spk019_Danaher.pdf. Accessed 8 Sept 2015

  • De Biagi V, Chiaia B, Frigo B (2015) Impact of snow avalanche on buildings: forces estimation from structural back-analyses. Eng Struct 92:15–28

    Article  Google Scholar 

  • De Biagi V, Barbero M, Borri-Brunetto M (2016) A reliability-based method for taking into account snowfall return period in the design of buildings in avalanche-prone areas. Nat Hazards 81:1901–1912

    Article  Google Scholar 

  • De Biagi V, Napoli ML, Barbero M, Peila D (2017a) Estimation of the return period of rockfall blocks according to their size. Nat Hazards Earth Syst Sci 17:103–113

    Article  Google Scholar 

  • De Biagi V, Parisi F, Asprone D, Chiaia B, Manfredi G (2017b) Collapse resistance assessment through the implementation of progressive damage in finite element codes. Eng Struct 136:523–534. doi:10.1016/j.engstruct.2017.01.058

    Article  Google Scholar 

  • Eskesen SD, Tengborg P, Kampmann J, Veicherts TH (2004) Guidelines for tunnelling risk management: international Tunnelling Association, ITA Working Group No. 2. Tunn Undergr Space Technol 19:217–237. doi:10.1016/j.tust.2004.01.001

    Article  Google Scholar 

  • Ezell BC, Bennett SP, Von Winterfeldt D, Sokolowski J, Collins AJ (2010) Probabilistic risk analysis and terrorism risk. Risk Anal. doi:10.1111/j.1539-6924.2010.01401.x

    Google Scholar 

  • Faber MH (2001) Logical trees in risk analysis: an introduction. Swiss Federal Institute of Technology. Lecture Notes on Risk and Reliability in Civil Engineering

  • Fell R, Ho KKS, Lacasse S, Loroi E (2005) A framework for landslide risk assessment and management. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International Conference on Landslide Risk Management, 31 May–3 June 2005 Vancouver, Canada. Taylor and Francis Group, London, pp 3–25

    Google Scholar 

  • Ferlisi S, Cascini L, Corominas J, Matano F (2012) Rockfall risk assessment to persons travelling in vehicles along a road: the case study of the Amalfi coastal road (southern Italy). Nat Hazards 62:691–721

    Article  Google Scholar 

  • General Services Administration (GSA) (2013) Alternate path analysis and design guidelines for progressive collapse resistance, Washington, DC, 143

  • Glade T (2003) Vulnerability assessment in landslide risk analysis. Erde 134(2):123–146

    Google Scholar 

  • Greiving S, van Westen C, Corominas J, Glade T, Malet JP, Van Asc T (2015). Introduction: the components of risk governance. In: Van Asc T, Corominas J, Greiving S, Malet JP, Sterlacchini S (eds) (2015) Mountain risks: from prediction to management and governance. Advances in Natural and Technological Hazards Research, Springer, Berlin, vol 34, pp 1–27

  • Hoek E (2000) Practical rock engineering, 141–165. Retrieved at: www.rocscience.com. Accessed 09 Sept 2015

  • Hossain MN, Amyotte PR, Khan FL, Abuswer MA, Skjold T, Morrison LS (2013) Dust explosion quantitative risk management for non traditional dusts. Chem Eng Trans 31:115–120. doi:10.3303/CET1331020

    Google Scholar 

  • Hungr O, Evans SG, Hazzard J (1999) Magnitude and frequency of rockfalls and rock slides along the main transportation corridors of south-western British Columbia. Can Geotech J 36(2):224–238. doi:10.1139/t98-106

    Article  Google Scholar 

  • Khademi J, Shahriar K, Sharifzadeh M (2006) A methodology for rock TBM selection based on geotechnical hazards mitigation. In: 8th regional rock mechanics symposium, Turkey

  • Lari S, Frattini P, Crosta GB (2014) A probabilistic approach for landslide hazard analysis. Eng Geol 182:3–14. doi:10.1016/j.enggeo.2014.07.015

    Article  Google Scholar 

  • Leiba M, Baynes F, Scott G, Granger K (2002) Quantitative landslide risk assessment of Cairns. J News Aust Geomech Soc 37(3):1–13

    Google Scholar 

  • Macciotta R, Martin CD, Cruden DM (2015) Probabilistic estimation of rockfall height and kinetic energy based on a three-dimensional trajectory model and Monte Carlo simulation. Landslides 12:757–772. doi:10.1007/s10346-014-0503-z

    Article  Google Scholar 

  • Mavrouli O, Corominas J (2010a) Rockfall vulnerability assessment for reinforced concrete buildings. Nat Hazards Earth Syst Sci 10:2055–2066

    Article  Google Scholar 

  • Mavrouli O, Corominas J (2010b) Vulnerability of simple reinforced concrete buildings to damage by rockfalls. Landslides 7:169–180

    Article  Google Scholar 

  • Mavrouli O, Fotopoulou S, Pitilakis K, Zuccaro G, Corominas J, Santo A, Cacace F, De Gregorio D, Di Crescenzo G, Foerster E, Ulrich T (2014) Vulnerability assessment for reinforced concrete buildings exposed to landslides. Bull Eng Geol Environ 73:265–289

    Google Scholar 

  • Mavrouli O, Abbruzzese J, Corominas J, Labiouse V (2015). Review and advances in methodologies for rockfall hazard and risk assessment. In: Van Asc T, Corominas J, Greiving S, Malet JP, Sterlacchini S (eds) (2015). Mountain risks: from prediction to management and governance. Advances in Natural and Technological Hazards Research, Springer, vol 34, pp 179–199

  • Mazzini M (2001) Corso di sicurezza ed analisi di rischio. Università degli studi di Pisa. Retrieved at: http://www.dimnp.unipi.it/m.carcassi/materialedidattico/Lez%20Sic%20e%20Analisi%20del%20Rischio/RISCHIO_VERS_2.pdf. Accessed 16 Sept 2015

  • Mignelli C, Lo Russo S, Peila D (2012) Rockfall risk management assessment: the RO.MA. approach. Nat Hazards 62:1109–1123. doi:10.1007/s11069-012-0137-1

    Article  Google Scholar 

  • Mignelli C, Peila D, Lo Russo S, Ratto SM, Broccolato M (2014) Analysis of rockfall risk on mountainside roads: evaluation of the effect of protection devices. Nat Hazards 73:23–35. doi:10.1007/s11069-013-0737-4

    Article  Google Scholar 

  • Müllers I, Vogel T (2005) Column failure as a hazard scenario for flat slab structures. In: IABSE symposium report vol 90, no 3, pp 18–24

  • Nielsen MP (1998) Limit analysis and concrete plasticity, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Oggeri C, Tosco P (2005) Identificazione del rischio per eventi di caduta massi. GEAM, Note Tecniche

  • Peila D, Guardini C (2008) Use of the event tree to assess the risk reduction obtained from rockfall protection devices. Nat Hazards Earth Syst Sci 8:1441–1450

    Article  Google Scholar 

  • Ruth P, Marchand KA, Williamson EB (2006) Static equivalency in progressive collapse alternate path analysis: reducing conservatism while retaining structural integrity. J Perform Constr Facil 20(4):349–364

    Article  Google Scholar 

  • Saito H, Nakayama D, Matsuyama H (2009) Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan. Geomorphology 109(3–4):108–121. doi:10.1016/j.geomorph.2009.02.026

    Article  Google Scholar 

  • Shahriar K, Sharifzadeh M, Hamidi JK (2008) Geotechnical risk assessment based approach for rock TBM selection in difficult ground conditions. Tunn Undergr Space Technol 23:318–325. doi:10.1016/j.tust.2007.06.012

    Article  Google Scholar 

  • Stamatelatos M et al (2001) Fault tree handbook with aerospace applications. Prepared for NASA office of safety and mission assurance NASA headquarters Washington, DC 20546. Version 1.1

  • Straub D, Schubert M (2008) Modeling and managing uncertainties in rockfall hazards. Georisk 2(1):1–15

    Google Scholar 

  • UNDRO (1991). Mitigation natural disasters phenomena, effects and options. A manual for planner

  • Van Westen C J, Alkema D, Damen M C J, Kerle N, Kingma N C (2011). Multi hazard risk assessment. Distance education course guide book. United Nations University-ITC School on Disaster Geo information Management (UNU-ITC DGIM)

Download references

Acknowledgements

This research has been funded under the “Realizzazione di scenari di rischio per crolli di roccia Politecnico di Torino—Regione Autonoma Valle d’Aosta” Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio De Biagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Biagi, V., Napoli, M.L. & Barbero, M. A quantitative approach for the evaluation of rockfall risk on buildings. Nat Hazards 88, 1059–1086 (2017). https://doi.org/10.1007/s11069-017-2906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-017-2906-3

Keywords

Navigation