Skip to main content

Advertisement

Log in

Assessment of hydro-geomorphological hazard potentials in the Chilean semiarid coastal range and its impacts on La Serena city, Coquimbo Region

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Two micro-catchments, tributaries of the Elqui River in the coastal range of the semiarid central-northern Chile were analyzed to establish the hazard potentials associated with extreme rainfall and their effects on the urban area of La Serena city. Geomorphological mapping was performed identifying the morphological features associated with inherited and present-day processes, through photointerpretation and field work. To assess the geohazard potentials related to extreme precipitation events, a detailed terrain analysis was performed deriving topographic indices that in turn characterize the related process potentials. Extreme rainfall events were calculated with a decadal recurrence (>60 mm/day) and are subsequently associated with El Niño (ENSO) and Pacific Decadal Oscillation (PDO warm phase) events. We applied a simple storm flow model using a 20-year return period reflecting a disastrous flood event that affected the La Serena urban area in June 2011. The results highlight the spatial distribution of the hazard potentials in the two Elqui tributaries and their effects on the La Serena urban area. We show that areas subject to intensive land use change and urban sprawl associated with the lower marine terrace and river mouth of the Elqui River are of very high flooding and tsunami risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Source: www.emol.cl

Fig. 15

Similar content being viewed by others

References

  • Araya-Vergara JF (1985) Análisis de la carta geomorfológica de la cuenca del Mapocho. Informaciones Geográficas 32:31–44

    Google Scholar 

  • Aubrecht C, Fuchs S, Neuhold C (2013) Spatio-temporal aspects and dimensions in integrated disaster risk management. Nat Hazards 68:1205–1216. doi:10.1007/s11069-013-0619-9

    Article  Google Scholar 

  • Banks JC, Camp JV, Mankowitz MD (2014) Adaptation planning for floods: a review of available tools. Nat Hazards 70:1327–1337. doi:10.1007/s11069-013-0876-7

    Article  Google Scholar 

  • Beck S, Barrientos S, Kausel E, Reyes M (1998) Source characteristics of historic earthquakes along the central Chile subduction zone. J S Am Earth Sci 11(2):115–129

    Article  Google Scholar 

  • Birkmann J, Cardona OD, Carreño ML, Barbat AH, Pelling M, Schneiderbauer S, Kienberger S, Keiler M, Alexander D, Zeil P, Welle T (2013) Framing vulnerability, risk and societal responses: the MOVE framework. Nat Hazards 67:193–211. doi:10.1007/s11069-013-0558-5

    Article  Google Scholar 

  • Boehner J, Koethe R, Conrad O, Gross J, Ringeler A, Selige T (2002) Soil Regionalisation by means of terrain analysis and process parameterisation. In: Micheli E, Nachtergaele F, Montanarella L (eds) Soil classification 2001. European soil Bureau, research report no. 7, EUR 20398 EN, Luxembourg, pp 213–222

  • Cardona OD (2009) Teoría del Riesgos y Desastres. Gestión Integral de Riesgos y Desastres. Curso de Educación Superior. Universidad Internacional de Florida

  • Castro CP, Ortiz J (2003) Expansión urbana y niveles de vulnerabilidad a amenazas naturales en una ciudad de tamaño medio: La Serena, Región IV de Coquimbo. In: Preoceedings, 51 Congreso Internacional de Americanista, Santiago de Chile

  • Castro CP, Soto MV, Fernandez R, Maerker M, Rodolfi G (2009) Impacto de la geodinámica actual del valle de Nantoco, cuenca del río Copiapó, asociado a la reconversión productiva. Revista de Geografía Norte Grande 42:81–99

    Google Scholar 

  • Comisión Nacional de Medio Ambiente (CONAMA) (2006) Estudio de la variabilidad climática en Chile para el siglo XXI. Informe Final. Realizado por el Departamento de Geofísica, Universidad de Chile, Santiago de Chile

  • Conrad O (2006) SAGA—program structure and current state of implementation. In: Bohner J, McCloy KR, Strobl J (eds) SAGA analysis and modelling applications. Verlag Erich Goltze GmbH, Göttingen, pp 39–52

    Google Scholar 

  • Dirección Meteorológica de Chile (2014) http://164.77.222.61/climatologia/

  • Doerr SH, Shakesby RA, Walsh RPD (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev 51(1–4):33–65

    Article  Google Scholar 

  • Emparán C, Pineda G (2006) Geología del área Andacollo Puerto Aldea. Región de Coquimbo. Carta Geológica de Chile. Serie Geología Básica. N° 96. Servicio Nacional de Geología y Minería. Santiago de Chile

  • Estrategia Internacional para la Reducción de Desastres (EIRD) (2008) El cambio climático y la reducción del riesgo de desastres. Naciones Unidas-EIRD, Suiza

    Google Scholar 

  • Garreaud R, Aceituno P, Muñoz R, Rojas M, Montecinos A (2008). El clima de Chile está cambiando. Comunicación del Proyecto ACT-19. Variabilidad climática en Chile: evaluación, interpretación y proyecciones. Universidad de Chile. Santiago de Chile

  • Grohmann CH (2004) Morphometric analysis in geographic information systems: applications of free software GRASS and R. Comput Geosci 30(9–10):1055–1067. doi:10.1016/j.cageo.2004.08.002

    Article  Google Scholar 

  • Hawkins RH, Ward TJ, Woodward DE, Van Mullem JA (2009) Curve number hydrology—state of the practice. American Society of Civil Engineers (ASCE), Reston, VA

    Google Scholar 

  • Huang SL, Yeh CT, Chang LF (2010) The transition to an urbanizing world and the demand for natural resources. Curr Opin Environ Sustain 2:136–143. doi:10.1016/j.cosust.2010.06.004

    Article  Google Scholar 

  • Instituto Nacional de Estadísticas (INE) (2012) Compendio Nacional de estadísticas. http://www.ine.cl/canales/menu/publicaciones/compendio_estadistico/compendio_estadistico2012.php

  • Kappes MS, Gruber K, Frigerio S, Bell R, Keiler M, Glade T (2012) The MultiRISK platform: the technical concept and application of a regional-scale multihazard exposure analysis tool. Geomorphology 151–152:139–155. doi:10.1016/j.geomorph.2012.01.024

    Article  Google Scholar 

  • Keiler M, Kellerer-Pirklbauer A, Otto JC (2012) Concepts and implications of environmental change and human impact: studies from Austrian geomorphological research (Preface). Geogr Ann 94:1–5. doi:10.1111/j.1468-0459.2012.00457.x

    Article  Google Scholar 

  • Le Roux JP, Vargas G (2005) Hydraulic behavior of tsunami backflows: insights from their modern and ancient deposits. Environ Geol 49:65–75

    Article  Google Scholar 

  • Le Roux JP, Olivares DM, Nielsen SN, Smith ND, Middleton H, Fenner J, Ishman SE (2006) Bay sedimentation as controlled by regional crustal behaviour, local tectonics and eustatics sea-level changes: Coquimbo Formation (Mioceno–Plioceno), Bay of Tongoy, central Chile. Sedyment Geol 184:133–153

    Article  Google Scholar 

  • Lei Y, Wang J (2014) A preliminary discussions on the opportunities and challenges of linking climatic changes adaptation with risk reduction. Nat Hazards 71:1587–1597. doi:10.1007/s11069-013-0966-6

    Article  Google Scholar 

  • Märker M, Castro CP, Pelacani S, Soto MV (2008) Assesment of degradation susceptibility in the Chacabuco Province of central Chile using a morphometric based response units approach. Geografia Física e Dinamica Quaternaria 31:47–53

    Google Scholar 

  • Märker M, Pelacani S, Schröder B (2011) A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy. Geomorphology 125(4):530–540

    Article  Google Scholar 

  • Märker M, Dangel F, Soto Bäuerle V, Rodolfi G (2012) Assessment of natural hazards and vulnerability in the Rio Copiapó catchment: a case study in the ungauged Quebrada Cinchado Catchment. Investigaciones Geográficas Chile 44:17–28

    Google Scholar 

  • Mitas L, Mitasova H (1998) Distributed soil erosion simulation for effective erosion prevention. Water Resour Res 34:505–516

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994a) Landscape dissection and drainage area-slope thresholds. In: Kirkby MJ (ed) Process models and theoretical geomorphology. Wiley, Hoboken

    Google Scholar 

  • Montgomery DR, Dietrich WE (1994b) A physically-based model for the topographic control of shallow landsliding. Water Resour Res 30:1153–1171

    Article  Google Scholar 

  • Moscoso R, Nasi C, Salinas P (1982) Hoja de Vallenar y parte norte de La Serena. Escala 1:250.000. Servicio Nacional de Geología y Minería, Santiago de Chile

  • Oficina Nacional de Emergencias (ONEMI) (2015) http://www.onemi.cl/wp-content/themes/onemi-bootstrap-master/busqueda.html?search=tsunami+coquimbo+2015

  • Olaya V, Conrad O (2009) Geomorphometry in SAGA. In: Hengl T, Reuter HI (eds) Geomorphometry concpets, software, applications. Developments in soil science, vol 33. Elsevier, Amsterdam, NL, pp 293–308

    Chapter  Google Scholar 

  • Ortiz J, Escolano S (2005) Crecimiento periférico del Gran Santiago. Hacia la desconcentración funcional de la ciudad. http://www.ub.es/geocrit/sn/sn-194-04.htm

  • Ortiz J, Castro CP, Escolano S (2002) Procesos de reestructuración urbana y niveles de vulnerabilidad a amenazas naturales en una ciudad de tamaño medio del sistema urbano chileno: el caso de La Serena, en la Región IV de Coquimbo. Investigaciones Geográficas 36:17–42

    Google Scholar 

  • Ortiz W, Castro CP, Rugiero V (2011) Percepción del riesgo en la comuna de la Serena. Revista INVI 75:105–142

    Google Scholar 

  • Owen JJ, Amundson R, Dietrich WE, Nishiizumi K, Sutter B, Chong G (2011) The sensitivity of hillslope bedrock erosion to precipitation. Earth Surf Process Landf 36:117–135. doi:10.1002/esp.2083

    Article  Google Scholar 

  • Pardo M, Comte D, Monfre T (2002a) Seismotectonic and stress distribution in the central Chile subduction zone. J S Am Earth Sci 15:11–22

    Article  Google Scholar 

  • Pardo M, Comte D, Monfret T, Boroschek R, Astroza M (2002b) The October 15, 1997 Punitaqui earthquake (Mw = 7.1): a destructive event within the subducting Nazca plate in central Chile. Tectonophysics 345:199–210

    Article  Google Scholar 

  • Paskoff R (1970) Recherches geomorphologiques dans le Chili semi-aride. Biscaye Frères, Bordeaux

    Google Scholar 

  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Prediction soil erosion by water: a guide to conservation planning with the revised universal soil loss equation. Agricultural handbook 703. US Department of Agriculture, Washington, DC, p 404

    Google Scholar 

  • Saillard M, Hall SR, Audin L, Fraber DL, Herail G, Martinod J, Regard V, Finkel RC, Bondoux F (2009) Non-steady long-term uplift rates and Pleistocene marine terrace development along the Andean margin of Chile (31°S) inferred from 10Be dating. Earth Planet Sci Lett 277:50–63

    Article  Google Scholar 

  • Saillard M, Riotte J, Regards V, Viollete A, Hérail G, Riquelme R (2011) Beach ridges UeTH dating in Tongoy bay tectonic implications for a peninsula bay system, Chile. J S Am Earth Sci 40:77–84

    Article  Google Scholar 

  • Sarricolea P (2004) Niveles de vulnerabilidad a amenazas naturales en una ciudad intermedia y sus áreas de expansión: el caso de la Serena, IV región de Coquimbo. Dissertation, Universidad de Chile

  • Sarricolea P, Martín-Vide J (2012) Distribución espacial de las precipitaciones diarias en Chile mediante el índice de concentración a resolución de 1 mm, entre 1965–2005. In: Cuadrat JM, Dorta MJ, Estrela F, González Rouco JA, López Díaz JC, García Codrón F, Sánchez Rodrigo J, Martín-Vide J, García Herrera R (eds) Cambio climático, extremos e impactos. Publicaciones de la Asociación Española de Climatología, Salamanca, pp 631–639

    Google Scholar 

  • Sarricolea P, Herrera-Ossandon M, Meseguer-Ruiz O (2016) Climatic regionalisation of continental Chile. J Maps. doi:10.1080/17445647.2016.1259592

    Google Scholar 

  • Soto MV (2016) Assessment of process dynamics and evolutionary trend of the western part of the arid Chilean coastal range: relationships between river catchments and coastal dynamics of the Coquimbo bay system, Chile. PhD Thesis, Eberhard Karls Universitat Tubingen

  • Soto MV, Märker M, Arriagada J, Castro CP, Rodolfi G (2010) Evaluación de la amenaza natural en ambiente semiárido, sustentada en la geomorfología y el modelamiento de índices topográficos. Salamanca, Región de Coquimbo, Chile. Investigaciones Geográficas 42:19–36

    Google Scholar 

  • Soto MV, Märker M, Castro CP, Rodolfi G (2012) Dinámica actual de microcuencas del desierto costero de Atacama y su influencia en la generación de amenazas. Geografía Fisica e Dinámica Quaternaria 35:79–89

    Google Scholar 

  • Soto MV, Märker M, Rodolfi G, Sepúlveda SA, Cabello M (2014) Assessment of geomorphic processes affecting the paleo-landscape of Tongoy Bay, Coquimbo Region, central Chile. Geografía Fisica e Dinámica Quaternaria 37:51–66

    Google Scholar 

  • Soto MV, Märker M, Castro CP, Rodolfi G (2015) Análisis integrado de las condiciones de amenaza natural en el medio ambiente costero semiárido de Chile. La Serena, Coquimbo. Boletín de la Sociedad de Geógrafos de España 67:213–231

    Google Scholar 

  • Tucker GE, Hancock GR (2010) Modelling landscape evolution. Earth Surf Proc Land 35:28–50

    Article  Google Scholar 

  • Vargas X (1999) Corrientes de detritos en la Quebrada de Macul, Chile. Estudio de caudales máximos. Ingeniería del Agua 6(4):341–344

    Article  Google Scholar 

  • Vigny C, Rudloff A, Ruegg JC, Madariaga R, Campos J, Alvarez M (2009) Upper plate deformation measured by GPS in the Coquimbo Gap, Chile. Phys Earth Planet Inter 175:86–95. doi:10.1016/j.pepi.2008.02.013

    Article  Google Scholar 

  • Wilcox DP, Sorice MG, Young MH (2011) Dryland ecohydrology in the anthropocene: taking stock of human–ecological interactions. Geogr Compass 5(3):112–127. doi:10.1111/j.1749-8198.2011.00413.x

    Article  Google Scholar 

  • Wyndam K (2012) Análisis de la vulnerabilidad y riesgo del sector turístico y la población flotante en la comuna de La Serena frente a la ocurrencia de una amenaza de origen natural. IV Región de Coquimbo. Dissertation, Universidad de Chile

  • Zakerinejad R, Märker M (2014) Prediction of Gully erosion susceptibilities using detailed terrain analysis and maximum entropy modeling: a case study in the Mazayejan Plain, Southwest Iran. Geografia Fisica e Dinamica Quaternaria 37(1):67–76. doi:10.4461/GFDQ.2014.37.7

    Google Scholar 

Download references

Acknowledgements

This work was funded by FONDECYT (National Fund for Science and Technology) projects 1120234 and 11130629. Special thanks to Giuliano Rodolfi, colleague and friend, who died in November 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Victoria Soto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto, M.V., Sarricolea, P., Sepúlveda, S.A. et al. Assessment of hydro-geomorphological hazard potentials in the Chilean semiarid coastal range and its impacts on La Serena city, Coquimbo Region. Nat Hazards 88, 431–452 (2017). https://doi.org/10.1007/s11069-017-2873-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-017-2873-8

Keywords

Navigation