Skip to main content
Log in

Laboratory study on effects of submerged obstacles on tsunami wave and run-up

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This paper presents laboratory experiments and numerical simulations of effects of submerged obstacles on tsunami-like solitary wave and its run-up. This study was carried out for the breaking and non-breaking solitary waves on 1:19.85 uniform slope which contains a submerged obstacle. New laboratory experiments are performed to describe the mitigation of tsunami amplitude and run-up under the effect of submerged obstacles. We are based on experimental results obtained to validate the numerical model. The numerical modeling using COULWAVE aims essentially to show the effect of the obstacle on the shape of solitary wave and the limit of this effect. Using a multiple nonlinear regression, we have determined a model to estimate height of run-up according to the amplitude of the wave and the obstacle peak depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Belega D (2013) Accuracy analysis of the normalized frequency estimation of a discrete-time sine-wave by the average-based interpolated DFT method. Measurement 46(1):593–602

    Article  Google Scholar 

  • Briggs M, Synolakis C, Harkins D (1995) Tsunami run-up on conical island. In: Isaacson M, Quick M (eds) Proceedings of the wave-physical and numerical modeling. University of British Columbia, Vancouver, pp 446–455

    Google Scholar 

  • Brocchini M, Gentile R (2001) Modeling the run-up of significant wave groups. Cont Shelf Res 21:1533–1550

    Article  Google Scholar 

  • Carrier G, Greenspan H (1958) Water waves of finite amplitude on a sloping beach. J Fluid Mech 4:97–109

    Article  Google Scholar 

  • Carrier G, Wu T, Yeh H (2003) Tsunami run-up and draw-down on plane beach. J Fluid Mech 475:79–99

    Article  Google Scholar 

  • Chang K, Hsu T, Liu P (2001) Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: part I. Solitary waves. Coast Eng 44:13–36

    Article  Google Scholar 

  • Chang Y, Hwang K, Hwung H (2009) Large-scale laboratory measurements of solitary wave inundation on a 1:20 slope. Coast Eng 56:1022–1034

    Article  Google Scholar 

  • Didenkulova I, Zahibo N, Kurkin A, Levin B, Pelinovsky E, Soomere T (2006) Run-up of nonlinearly deformed waves on a coast. Dokl Earth Sci 411:1241–1243

    Article  Google Scholar 

  • Didenkulova I, Pelinovsky E, Soomere T, Zahibo N (2007) Runup of nonlinear asymmetric waves on a plane beach. In: Kundu A (ed) Tsunami and nonlinear waves. Springer, Berlin, pp 175–190

    Chapter  Google Scholar 

  • Didenkulova I, Pelinovsky E, Soomere T (2009) Runup characteristics of symmetrical solitary tsunami waves of “unknown” shapes. Birkhäuser, Basel, pp 2249–2264. doi:10.1007/978-3-0346-0057-6_13

    Google Scholar 

  • Geist EL, Lynett PJ, Chaytor JD (2009) Hydrodynamic modeling of tsunamis from the Currituck landslide. Mar Geol 264(12):41–52. doi:10.1016/j.margeo.2008.09.005 (Tsunami hazard along the U.S. Atlantic coast)

    Article  Google Scholar 

  • Goring D, Raichlen F (1980) The generation of long waves in the laboratory. In: Edge Billy L (ed) Seventeenth coastal engineering conference. American Society of Civil Engineers, Sydney, pp 763–783

    Google Scholar 

  • Hsiao SC, Lin TC (2010) Tsunami-like solitary waves impinging and overtopping an impermeable seawall: experiment and RANS modeling. Coast Eng 57(1):1–18

    Article  Google Scholar 

  • Hsiao SC, Hsu TW, Lin TC, Chang YH (2008) On the evolution and run-up of breaking solitary waves on a mild sloping beach. Coast Eng 55(12):975–988

    Article  Google Scholar 

  • Jianhong Y, Dongsheng J, Ren W, Changqi Z (2013) Numerical study of the stability of breakwater built on a sloped porous seabed under tsunami loading. Appl Math Model 37(23):9575–9590

    Article  Google Scholar 

  • Kaistrenko V, Mazova R, Pelinovsky E, Simonov K (1991) Analytical theory for tsunami runup on a smooth slope. Int J Tsunami Soc 9:115–127

    Google Scholar 

  • Knouglou U (2004) Nonlinear evolution and run-up-rundown of long over a sloping beach. J Fluid Mech 513:363–372

    Article  Google Scholar 

  • Knouglou U, Synolakis C (2006) Initial value problem solution of nonlinear shallow water-wave equations. Phys Rev Lett 97:481–501

    Google Scholar 

  • Lan Y, Lee J (2010) On waves propagating over a submerged poro-elastic structure. Ocean Eng 37:705–717

    Article  Google Scholar 

  • Lee J, Lan Y (1996) A second-order solution of waves passing porous structures. Ocean Eng 23:143–165

    Article  Google Scholar 

  • Li Y, Raichlen F (2003) Energy balance model for breaking solitary wave runup. J Waterw Port Coast Ocean Eng 129(2):47–59

    Article  Google Scholar 

  • Lin P (2004) A numerical study of solitary wave interaction with rectangular obstacles. Coast Eng 51:35–51

    Article  Google Scholar 

  • Lin P, Chang K, Liu P (1999) Runup and rundown of solitary waves on sloping beaches. J Waterw Port Coast Ocean Eng 125(5):247–255

    Article  Google Scholar 

  • Lin C, Ho T, Chang S, Hsieh S, Chang K (2005) Vortex shedding induced by a solitary wave propagating over a submerged vertical plate. Int J Heat Fluid Flow 26:894–904

    Article  Google Scholar 

  • Liu P, Cheng Y (2001) A numerical study of the evolution of solitary over a shelf. Phys Fluids 13(6):1660–1667

    Article  Google Scholar 

  • Liu P, Al-banaa K (2004) Solitary wave run-up and force on a vertical barrier, numerical modelling of wave interaction with porous structures. J Fluid Mech 505:225–233

    Article  Google Scholar 

  • Liu P, Synolakis C, Yeh H (1991) Tsunami in Papua New Guinea was intense as first thought. J Fluid Mech 229:675–688

    Article  Google Scholar 

  • Losada M, Vidal C, Medina R (1989) Experimental study of the evolution of a solitary wave at an abrupt junction. J Geophys Res 94(C10):14557–14566

    Article  Google Scholar 

  • Lynett P (2006) Nearshore modeling using high-order Boussinesq equations. J Waterw Port Coast Ocean Eng 132(5):348–357

    Article  Google Scholar 

  • Lynett P, Liu P (2002) A two-dimensional, depth-integrated model for internal wave propagation over variable bathymetry. Wave Motion 36:221–240

    Article  Google Scholar 

  • Lynett P, Liu P (2005) A numerical study of the runup generated by threedimensional landslides. J Geophys Res Oceans 110(C3):C03006. doi:10.1029/2004JC002443

    Article  Google Scholar 

  • Lynett P, Wu T, Liu P (2002) Modeling wave runup with depth-integrated equations. Coast Eng 46:89–107

    Article  Google Scholar 

  • Madsen P, Fuhrman D (2008) Run-up of tsunamis and long waves in terms of surf-similarity. Coast Eng 55:209–223

    Article  Google Scholar 

  • Mazova R, Osipenko N, Pelinovsky E (1991) Solitary wave climbing a beach without breaking. Rozpr Hydrotech 54:71–80

    Google Scholar 

  • Pedersen G (2008) Modeling runup with depth integrated equation models. In: Liu Philip L-F, Harry Y, Costas S (eds) Advanced numerical models for simulating tsunami waves and runup, vol 10. pp 3–42

  • Padersen G, Gjevik B (1983) Run-up of solitary waves. J Fluid Mech 142:283–299

    Article  Google Scholar 

  • Pelinovsky E, Mazova R (1992) Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles. Nat Hazards 6:13–17

    Article  Google Scholar 

  • Ramsden J (1996) Forces on a vertical wall due to long waves, bores, and dry-bed surges. J Waterw Port Coast Ocean Eng 122(3):134–141

    Article  Google Scholar 

  • Synolakis CE (1987) The runup of solitary waves. J Fluid Mech 185:523–545. doi:10.1017/S002211208700329X

    Article  Google Scholar 

  • Synolakis CE (1991) Tsunami runup on steep slopes: how good linear theory really is. Nat Hazards 4(2–3):221–234. doi:10.1007/BF00162789

    Article  Google Scholar 

  • Synolakis CE, Bernard E (2006) Tsunami science before and after 2004. Philos Trans R Soc A 364:2231–2265. doi:10.1098/rsta.2006.1824

    Article  Google Scholar 

  • Tadepalli S, Synolakis C (1994) The run-up of n-waves. Proc R Soc Lond A 445:99–112

    Article  Google Scholar 

  • Tinti S, Tonini R (2005) Analytical evolution of tsunamis induced by near-shore earthquakes on a constant-slope ocean. J Fluid Mech 535:33–64

    Article  Google Scholar 

  • Tsung WS, Hsiao SC, Lin TC (2012) Numerical simulation of solitary wave run-up and overtopping using Boussinesq-type model. J Hydrodyn Ser B 24(6):899–913

    Article  Google Scholar 

  • Wu YT, Hsiao SC, Huang ZC, Hwang KS (2012) Propagation of solitary waves over a bottom-mounted barrier. Coast Eng 62:31–47. doi:10.1016/j.coastaleng.2012.01.002

    Article  Google Scholar 

  • Wu YT, Yeh CL, Hsiao SC (2014) Three-dimensional numerical simulation on the interaction of solitary waves and porous breakwaters. Coast Eng 85:12–29

    Article  Google Scholar 

  • Xiao H, Huang W (2008) Numerical modeling of wave runup and forces on an idealized beachfront house. Ocean Eng 35:106–116

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the laboratory LEGHYD-USTHB, Algiers. The anonymous reviewers are, also, thanked for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houssam Eddine Touhami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touhami, H.E., Khellaf, M.C. Laboratory study on effects of submerged obstacles on tsunami wave and run-up. Nat Hazards 87, 757–771 (2017). https://doi.org/10.1007/s11069-017-2791-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-017-2791-9

Keywords

Navigation