Skip to main content

Advertisement

Log in

Agricultural impact assessment and management after three widespread tephra falls in Patagonia, South America

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Agricultural production is often concentrated in volcanically active or previously active areas where weathered volcanic products form fertile soils. However, this proximity means agriculture is exposed to tephra fall hazards. The type and severity of impacts to agricultural systems from tephra fall are dependent on both the hazard intensity metrics (tephra fall characteristics, such as thickness, grain size) and the vulnerability characteristics of the exposed agricultural system(s). Understanding the relationship between significant intensity metrics of tephra fall hazard and farm-scale and region-scale vulnerabilities is key to impact assessment and informing management and recovery strategies. Several large silicic eruptions have occurred over the past 20 years in the Patagonian region of South America, including the 1991 Hudson, 2008 Chaitén, and 2011 Cordón Caulle eruptions. These events deposited varying thicknesses of tephra on thousands of farms distributed across a variety of climates and production styles. Drawing on impact assessment data collected from interviews undertaken on post-event impact assessment reconnaissance trips, and other reports, this study evaluates the importance of tephra thickness as a hazard intensity metric, and vulnerability characteristics, when assessing impacts in the short and long term and, compares the effectiveness of response and recovery strategies. Whilst tephra thickness was the best single indicator of agricultural production losses, other factors, notably climate, farm type, and access to mitigation measures such as irrigation and/or cultivation, were also important indicators of damage. The climatic zone and associated precipitation level was found to be one of the most important characteristics of vulnerability, with higher damage occurring at lower tephra thicknesses in the semi-arid regions compared to farms in the temperate zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alexander D (2002) Principles of emergency planning and management. Oxford University Press, New York

    Google Scholar 

  • Antos JA, Zobel DB (1985) Recovery of forest understories buried by tephra from Mt. St. Helens. Vegetatio 64:103–111

    Article  Google Scholar 

  • Araya O, Wittwer F, Villa A, Ducom C (1990) Bovine fluorosis following volcanic activity in the southern Andes. Vet Rec 126(26): 641–642. Retrieved from http://www.cabdirect.org/abstracts/19902210133.html

  • Armienta MA, De la Cruz-Reyna S, Cruz O, Ceniceros N, Aguayo A, Marin M (2011) Fluoride in ash leachates: environmental implications at Popocatépetl volcano, central Mexico. Nat Hazards Earth Syst Sci 11(7):1949–1956. doi:10.5194/nhess-11-1949-2011

    Article  Google Scholar 

  • Aruani MC, Sánchez EE (2003) Fracciones de micronutrientes en suelos del Alto Valle de Rio Negro, Argentina. Cienc Del Suelo 21(2):78–81

    Google Scholar 

  • Assoiaćion Gremial de Productores de Leche de Osorno (2014). Erupción del Volcán Chaitén provoca daños en la agricultura. Retrieved from http://www.aproleche.cl/noticias/includes/muestra_noticias_anteriores.php?idi=1498

  • Ayris PM, Delmelle P (2012) The immediate environmental effects of tephra emission. Bull Volcanol 74(9):1905–1936. doi:10.1007/s00445-012-0654-5

    Article  Google Scholar 

  • Baker J (2014) Efficient analytical fragility function fitting using dynamic structural analysis. Earthq Spectra (in press). Retrieved from http://earthquakespectra.org/doi/abs/10.1193/021113EQS025M

  • Bazzurro P, Cornell C (2004) Guidelines for seismic assessment of damaged buildings. In: Proceedings of the …. Retrieved from http://www.iitk.ac.in/nicee/wcee/article/13_1708.pdf

  • Biass S, Scaini C, Bonadonna C, Folch A, Smith K, Höskuldsson A (2014) A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes; part 1: hazard assessment. Nat Hazards Earth Syst Sci 14(8):2265–2287. doi:10.5194/nhess-14-2265-2014

    Article  Google Scholar 

  • Blake DM, Wilson G, Stewart C, Craig HM, Hayes JL, Jenkins SF, Wilson TM, Horwell CJ, Andreastuti S, Daniswara R, Ferdiwijaya D, Leonard GS, Hendrasto M, Cronin S (2015) The 2014 eruption of Kelud volcano, Indonesia: impacts on infrastructure, utilities, agriculture and health. GNS Science Report 2015/15, 130 pp

  • Blong RJ (1984) Volcanic hazards: a sourcebook on the effects of eruptions. Academic Press, Sydney

    Google Scholar 

  • Blong R (2003) A new damage index. Nat Hazards 30: 1–23. Retrieved from http://link.springer.com/article/10.1023/A:1025018822429

  • Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J Geophys Res 110:1–21. doi:10.1029/2003JB002896

    Google Scholar 

  • Brunner D, Lemoine G, Bruzzone L (2010) Earthquake damage assessment of buildings using VHR optical and SAR imagery. IEEE Trans Geosci Remote Sens 48(5): 2403–2420. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5411791

  • Buteler M, Stadler T, López GP, Lassa MS, Liaudat DT, Fernandez-arhex DAV (2011) Propiedades insecticidas de la ceniza del complejo volcánico Puyehue-Cordón Caulle y su posible impacto ambiental. Rev Soc Entomol Argent 70:149–156

    Google Scholar 

  • Camuffo D, Enzi S (1995) Impact of the clouds of volcanic aerosols in Italy during the last 7 centuries. Nat Hazards 135–161. Retrieved from http://link.springer.com/article/10.1007/BF00634530

  • Chiroiu L, Andre G (2001) Damage assessment using high resolution satellite imagery: application to 2001 Bhuj, India, Earthquake

  • Collins BD, Dunne T (1986) Erosion of tephra from the 1980 eruption of Mount St. Helens. GSA Bull 97(7):896–905

    Article  Google Scholar 

  • Cook RJ, Barron JC, Papendick RI, Williams GJ (1981) Impact on agriculture of the Mount St. Helens eruptions. Science 211(4477):16–22. doi:10.1126/science.211.4477.16

    Article  Google Scholar 

  • Cronin SJ, Hedley MJ, Smith RJ, Neall VE (1997) Impact of Ruapehu ash fall on soil and pasture nutrient status 1 October 1995 eruptions. N Z J Agric Res 40(January):383–395

    Article  Google Scholar 

  • Cronin SJ, Hedley MJ, Neall VE, Smith RG (1998) Agronomic impact of tephra fallout from the 1995 and 1996 Ruapehu Volcano eruptions, New Zealand. Environ Geol 34(April):21–30

    Article  Google Scholar 

  • Cronin SJ, Manoharan V, Hedley MJ, Lognathan P (2000) Fluoride: a review of its fate, bioavailability, and risks of fluorosis in grazed-pasture systems in New Zealand. N Z J Agric Res 43(3):295–321

    Article  Google Scholar 

  • Cronin SJ, Neall VE, Lecointre JA, Hedley MJ, Loganathan P (2003) Environmental hazards of Fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 121:271–291

    Article  Google Scholar 

  • Dahlgren RA, Ugolini FC, Casey WH (1999) Field weathering rates of Mt. St. Helens tephra. Science 63(5):587–598

    Google Scholar 

  • Dale V, Swanson F, Crisafulli CM (2005) Ecological responses to the 1980 eruptions of Mt. St. Helens. Springer, Berlin

    Book  Google Scholar 

  • De la Cruz-Reyna S, Tilling RI (2008) Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: importance of an effective hazards-warning system. J Volcanol Geotherm Res 170(1–2):121–134. doi:10.1016/j.jvolgeores.2007.09.002

    Article  Google Scholar 

  • Decker R, Christiansen R (1984) Explosive eruptions of Kilauea Volcano, Hawaii. In: Geophysics Study Committee (Ed.), Explosive volcanism: inception, evolution and hazards (pp. 122–132). National Academy Press, Washington, DC

  • Diaz F, Jimenez CC, Tejedor M (2005) Influence of the thickness and grain size of tephra mulch on soil water evaporation. Agric Water Manag 74(1):47–55. doi:10.1016/j.agwat.2004.10.011

    Article  Google Scholar 

  • Durant AJ, Villarosa G, Rose WI, Delmelle P, Prata AJ, Viramonte JG (2011) Long-range volcanic ash transport and fallout during the 2008 eruption of Chaitén volcano. Phys Chem Earth Parts A/B/C, Chile. doi:10.1016/j.pce.2011.09.004

    Google Scholar 

  • Eggler WA (1963) Life of Paricutin volcano, Mexico, eight years after ceased activity. Am Midl Nat 69(1):38–68

    Article  Google Scholar 

  • Erdik M, Şeşetyan K, Demircioğlu MB, Hancılar U, Zülfikar C (2011) Rapid earthquake loss assessment after damaging earthquakes. Soil Dyn Earthq Eng 31(2):247–266. doi:10.1016/j.soildyn.2010.03.009

    Article  Google Scholar 

  • FAO (1997) Soil map of the world. Revised legend, with corrections and updates. GeoNetwork—UN Food and Agriculture Organisation. Retrieved from http://www.fao.org/geonetwork/srv/en/main.home

  • FAO (2001) Average precipitation in Latin America and Caribbean. GeoNetwork—UN Food and Agriculture Organisation. Retrieved from http://www.fao.org/geonetwork/srv/en/main.home

  • FAO (2008) Land use systems of the world—Latin America and Caribbean. GeoNetwork—UN Food and Agriculture Organisation. Retrieved from http://www.fao.org/geonetwork/srv/en/main.home

  • Flueck W (2013) Effects of fluoride intoxication on teeth of livestock due to recent volcanic eruption in Patagonia, Argentina. Online J Vet Res 14(4): 167–176. Retrieved from http://www.deerlab.org/Publ/pdfs/68.pdf

  • Flueck WT, Smith-Flueck JAM (2013a) Severe dental fluorosis in juvenile deer linked to a recent volcanic eruption in Patagonia. J Wildl Dis 49(2):355–366. doi:10.7589/2012-11-272

    Article  Google Scholar 

  • Flueck WT, Smith-Flueck JAM (2013b) Temporal kinetics of fluoride accumulation: from fetal to adult deer. Eur J Wildl Res 59(6):899–903. doi:10.1007/s10344-013-0734-7

    Article  Google Scholar 

  • Fowler WB, Lopushinsky W (1986) Wind blown volcanic ash in forest and agricultural conditions as related to meteorological conditions. Atmos Environ 20(3):421–425

    Article  Google Scholar 

  • Friedman DG (1984) Natural hazard risk assessment for an insurance program. Geneva Pap Risk Insur 9(30):57–128

    Google Scholar 

  • Frognerkockum P, Herbert R, Gislason S (2006) A diverse ecosystem response to volcanic aerosols. Chem Geol 231(1–2):57–66. doi:10.1016/j.chemgeo.2005.12.008

    Article  Google Scholar 

  • Fuchs S, Birkmann J, Glade T (2012) Vulnerability assessment in natural hazard and risk analysis: current approaches and future challenges. Nat Hazards 64(3):1969–1975. doi:10.1007/s11069-012-0352-9

    Article  Google Scholar 

  • Gestsdóttir H, Baxter P, Gísladóttir GA (2006) Fluorine poisoning in victims of the 1783–1784 eruption of the Laki fissure, Iceland. Eystri Ásar & Búland—pilot study excavation report

  • Ghobarah A (1999) Response‐based damage assessment of structures. Earthq Eng Struct Dyn 104(April 1998), 79–104. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1096-9845(199901)28:1%3C79::AID-EQE805%3E3.0.CO;2-J/abstract

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818. doi:10.1126/science.1185383

    Article  Google Scholar 

  • Graziano J, Miserendino E (2011) Recomendaciones para huertas y granjas ante la caída de ceniza volcánica. Presencia 57:44–45

    Google Scholar 

  • Haddow G, Bullock J, Coppola DP (2013) Introduction to emergency management, 5th edn. Butterworth-Heinemann, Waltham

    Google Scholar 

  • Jenkins S, Magill C, McAneney J, Blong R (2012) Regional ash fall hazard I: a probabilistic assessment methodology. Bull Volcanol 74(7):1699–1712. doi:10.1007/s00445-012-0627-8

    Article  Google Scholar 

  • Jenkins SF, Spence RJS, Fonseca JFBD, Solidum RU, Wilson TM (2014a) Volcanic risk assessment: quantifying physical vulnerability in the built environment. J Volcanol Geotherm Res 276:105–120. doi:10.1016/j.jvolgeores.2014.03.002

    Article  Google Scholar 

  • Jenkins SF, Wilson TM, Magill CR, Miller V, Stewart C (2014b) Volcanic ash fall hazard and risk: technical background paper for the UN-ISDR Global Assessment Report on Disaster Risk Reduction 2015. Mln (Vol. 120). Retrieved from http://muse.jhu.edu/content/crossref/journals/mln/v120/120.3contributors.html

  • Johnston DM, Houghton BF, Neall VE, Ronan KR, Paton D (2000) Impacts of the 1945 and 1995–1996 Ruapehu eruptions, New Zealand: an example of increasing societal vulnerability. Geol Soc Am Bull 5:720–726

    Article  Google Scholar 

  • Kabata A, Pendias H (2001) Trace elements in soils and plants. CRC, Washington

    Google Scholar 

  • Kircher C, Nassar A (1997). Development of building damage functions for earthquake loss estimation. Earthq Spectra 13(4): 663–682. Retrieved from http://www.earthquakespectra.org/doi/abs/10.1193/1.1585974

  • Krausmann E, Mushtaq F (2008) A qualitative Natech damage scale for the impact of floods on selected industrial facilities. Nat Hazards 46(2):179–197. doi:10.1007/s11069-007-9203-5

    Article  Google Scholar 

  • Leonard GS, Johnston DM, Williams S, Cole JW, Finnis K, Barnard S (2005). Impacts and management of recent volcanic eruptions in Ecuador: lessons for New Zealand. GNS Science report 2005/20

  • Livesey C, Payne J (2011) Diagnosis and investigation of fluorosis in livestock and horses. In Pract 33(9):454–461. doi:10.1136/inp.d6078

    Article  Google Scholar 

  • Macedonio G, Costa A (2012) Brief communication: rain effect on the load of tephra deposits. Nat Hazards Earth Syst Sci 12(4):1229–1233. doi:10.5194/nhess-12-1229-2012

    Article  Google Scholar 

  • Macedonio G, Pareschi MT, Santacroce R (1988) A numerical simulation of Plinian Fall Phase of 79 A.D. eruption of Vesuvius. J Geophys Res 93(B12):14817–14827

    Article  Google Scholar 

  • Magill CR, Hurst AW, Hunter LJ, Blong RJ (2006) Probabilistic tephra fall simulation for the Auckland Region, New Zealand. J Volcanol Geotherm Res 153(3–4):370–386. doi:10.1016/j.jvolgeores.2005.12.002

    Article  Google Scholar 

  • Martin RS, Watt SFL, Pyle DM, Mather TA, Matthews NE, Georg RB, Quayle BM (2009) Environmental effects of tephra fall in Argentina from the 2008 Chaitén volcanic eruption. J Volcanol Geotherm Res 184(3–4):462–472. doi:10.1016/j.jvolgeores.2009.04.010

    Article  Google Scholar 

  • McLaren RG, Cameron KC (1996) Soil science: sustainable production and environmental protection, 2nd edn. Oxford University Press

  • Mercado RA, Betram J, Lacsamana T, Pineda GL (1996) Socioeconomic impacts of the Mount Pinatubo eruption. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, Quezon City

    Google Scholar 

  • Mileti D, Henry AJ (1999) Disasters by design: a reassessment of natural hazards in the United States. National Academies Press, Washington

    Google Scholar 

  • Neild J, Flaherty PO, Hedley P, Underwood R, Johnston D, Christenson B, Brown P (1998) Impact of a volcanic Eruption on agriculture and forestry in New Zealand. MAF Policy Technical Paper 99/2, 92 pp

  • Nelson S, Sewake K (2008) Volcanic emissions injury to plant foliage. Plant Dis 47:1–11

    Google Scholar 

  • Newhall CG, Hendley II JW, Stauffer PH (1997) The Cataclysmic 1991 Eruption of Mount Pinatubo, Philippines (No. 113-97). US Geological Survey

  • Óskarsson N (1980) The interaction between volcanic gases and tephra: fluorine adhering to tephra of the 1970 Hekla eruption. J Volcanol Geotherm Res 8: 251–266. Retrieved from http://www.sciencedirect.com/science/article/pii/0377027380901079

  • Phelan J, Finnegan D, Ballantine D, Zoller W (1982) Airborne aerosol measurements in the quiescent plume of Mount St. Helens: september, 1980. Geophys Res Lett 9(9):1093–1096

    Article  Google Scholar 

  • Rees JD, Angeles L (1970) Paricutin revisited: a review of man’s attempts to adapt to ecological changes resulting from volcanic catastrophe. Geoforum (April):7–26

  • Rossetto T, Ioannou I, Grant DN (2013) Existing empirical fragility and vulnerability relationships: compendium and guide for selection. Pavia, Italy

    Google Scholar 

  • Rossetto T, Ioannou I, Grant DN, Maqsood T (2014) Guidelines for empirical vulnerability assessment report produced in the context of the vulnerability global component project. Pavia

  • Rubin CH, Noji EK, Seligman PJ, Holtz JL, Grande J, Vittani F (1994) Evaluating a fluorosis hazard after a volcanic eruption. Arch Environ Health 49(5):395–401. doi:10.1080/00039896.1994.9954992

    Article  Google Scholar 

  • Salazar J, Godagnone R, Marcolin A (1982) Relevamiento integrado de recursos naturales de Rio Negro. S. C. de Bariloche

  • Scasso R, Corbella H, Tiberi P (1994) Sedimentological analysis of the tephra from the 12–15 August 1991 eruption of Hudson volcano. Bull Volcanol 56(2):121–132

    Google Scholar 

  • Seymour VA, Hinckley TM, Morikawa Y, Franklin JF (1983) Foliage damage in coniferous trees following volcanic ashfall from Mt. St. Helens. Oecologia 59(2/3):339–343

    Article  Google Scholar 

  • Shoji S, Nanzyo M, Dahlgren RA (1993) Volcanic ash soil. Elsevier Science, Amsterdam

    Google Scholar 

  • Siffredi G, Ayesa J (2011) Informe estado de los pastizales en la transecta Bariloche-Onelli (Ruta 23). Bariloche

  • Smith K (2013) Environmental hazards: assessing risk and reducing disaster, 6th edn. Routledge, New York

    Google Scholar 

  • Smith WH, Staskawicz BJ (1977) Removal of atmospheric particles by leaves and twigs of urban trees : some preliminary observations and assessment of research needs. Environ Manag 1(4):317–330

    Article  Google Scholar 

  • Smith AM, Coupland G, Dolan L, Harberd N, Jones J, Martin C, Amey A (2010) Plant biology. Garland Science, New York

    Google Scholar 

  • Smithsonian (2014) Puyehue-Cordon Caulle weekly reports. Retrieved 5 Jan 2014 from http://www.volcano.si.edu/world/volcano.cfm?vnum=1507-15=

  • Sneva F, Britton C, Mayland H (1982) Mt. St. Helens Ash: considerations of its fallout on rangelands. Retrieved from http://eprints.nwisrl.ars.usda.gov/1128/1/615.pdf

  • Sparks RJ, Aspinall WP, Crosweller HS, Hincks TK (2013) Risk and uncertainty assessment of volcanic hazards. In: Risk and uncertainty assessment for natural hazards. Cambridge University Press: Cambridge, 558

  • Spence RJS, Zuccaro G, Petrazzuoli S, Baxter PJ (2004) Resistance of buildings to pyroclastic flows: analytical and experimental studies and their application to vesuvius. Nat Hazards Rev 5(1):48–59. doi:10.1061/(ASCE)1527-6988(2004)5:1(48)

    Article  Google Scholar 

  • Spence RJS, Kelman I, Baxter PJ, Zuccaro G, Petrazzuoli S (2005) Residential building and occupant vulnerability to tephra fall. Nat Hazards Earth Syst Sci 5(4):477–494. doi:10.5194/nhess-5-477-2005

    Article  Google Scholar 

  • Sword-Daniels V, Wardman J, Stewart C, Wilson T, Johnston D, Rossetto T (2011) Infrastructure impacts, management and adaptations to eruptions at Volcán Tungurahua, Ecuador, 1999–2010

  • Sword-Daniels V, Wilson TM, Sargeant S, Rossetto T, Twigg J, Johnston DM, Cole PD (2014) Chapter 26 consequences of long-term volcanic activity for essential services in Montserrat: challenges, adaptations and resilience. Geol Soc Lond Mem 39(1):471–488. doi:10.1144/M39.26

    Article  Google Scholar 

  • Thorarinsson SB, Sigvaldason GE (1971) The Hekla eruption of 1970. Bull Volcanol 36(2):269–288

    Article  Google Scholar 

  • Ugolini F, Dahlgren R (2002) Soil development in volcanic ash. Glob Environ Res 69–81. Retrieved from http://ns.airies.or.jp/publication/ger/pdf/06-2-09.pdf

  • Varekamp JC, Luhr JF, Prestegaard KL (1984) The 1982 eruptions of El Chichón volcano (Chiapas, Mexico): character of the eruptions, ash-fall deposits, and gasphase. J Volcanol Geotherm Res 23(1–2):39–68

    Article  Google Scholar 

  • Veneklaas E (1990) Nutrient fluxes in bulk precipitation and throughfall in two montane tropical rain forests, Colombia. J Ecol 78(4):974–992

    Article  Google Scholar 

  • Wang B, Michaelson G, Ping C-L, Plumlee G, Hageman P (2010) Characterization of pyroclastic deposits and pre-eruptive soils following the 2008 Eruption of Kasatochi Island Volcano, Alaska. Arctic Antarct Alp Res 42(3):276–284. doi:10.1657/1938-4246-42.3.276

    Article  Google Scholar 

  • Wardman J, Stewart C, Wilson T (2012). Impact assessment of the May 2010 eruption of Pacaya volcano, Guatemala

  • Watt SFL, Pyle DM, Mather T, Martin RS, Matthews NE (2009) Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaitén, Chile. J Geophys Res 114(B4):1–11. doi:10.1029/2008JB006219

    Article  Google Scholar 

  • Wilson TM, Cole JW (2007) Potential impact of ash eruptions on dairy farms from a study of the effects on a farm in eastern Bay of Plenty, New Zealand; implications for hazard mitigation. Nat Hazards 43(1):103–128. doi:10.1007/s11069-007-9111-8

    Article  Google Scholar 

  • Wilson T, Kaye G (2007) Agricultural fragility estimates for volcanic ash fall hazards. GNS Science report 2007/37, 52 pp

  • Wilson T, Kaye G, Stewart C, Cole J (2007) Impacts of the 2006 eruption of Merapi volcano, Indonesia, on agriculture and infrastructure. GNS Science report 2007/07, 71 pp

  • Wilson TM, Cole JW, Johnston DM, Stewart C, Dewar DJ, Cronin SJ (2009) The 1991 eruption of Volcán Hudson, Chile: impacts on agriculture and rural communities and long-term recovery. GNS Science report 2009/66

  • Wilson T, Cole J, Cronin S, Stewart C, Johnston D (2011a) Impacts on agriculture following the 1991 eruption of Vulcan Hudson, Patagonia: lessons for recovery. Nat Hazards 57(2):185–212. doi:10.1007/s11069-010-9604-8

    Article  Google Scholar 

  • Wilson TM, Cole JW, Stewart C, Cronin SJ, Johnston DM (2011b) Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bull Volcanol 73:223–239. doi:10.1007/s00445-010-0396-1

    Article  Google Scholar 

  • Wilson TM, Stewart C, Sword-Daniels V, Leonard GS, Johnston DM, Cole JW, Barnard ST (2012a) Volcanic ash impacts on critical infrastructure. Phys Chem Earth Parts A/B/C 45–46:5–23. doi:10.1016/j.pce.2011.06.006

    Article  Google Scholar 

  • Wilson T, Stewart C, Bickerton H, Baxter P, Outes V, Villarosa G, Rovere E (2012b) The health and environmental impacts of the June 2011 Puyehue-Cordón Caulle volcanic complex eruption: a report on the findings of a multidisciplinary team. GNS Science report 2012/20

  • Wilson G, Wilson TM, Deligne NI, Cole JW (2014) Volcanic hazard impacts to critical infrastructure: a review. J Volcanol Geotherm Res 286:148–182. doi:10.1016/j.jvolgeores.2014.08.030

    Article  Google Scholar 

  • Witham C, Oppenheimer C, Horwell C (2005) Volcanic ash-leachates: a review and recommendations for sampling methods. J Volcanol Geotherm Res 141(3–4):299–326. doi:10.1016/j.jvolgeores.2004.11.010

    Article  Google Scholar 

  • Zheng SJ (2010) Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency. Ann Bot 106(1):183–184. doi:10.1093/aob/mcq134

    Article  Google Scholar 

Download references

Acknowledgements

Thank you to all interview participants who took the time to share their experiences and photographs. Thank you to Peter Baxter (University of Cambridge, UK) Elizabeth Rovere (SEGEMAR, Argentina) for assistance and advice during fieldwork in Argentina. Thank you to the many farmers for allowing interviews. Particular thanks to David Dewar for outstanding translation support. The New Zealand team was funded by the New Zealand Ministry of Business Innovation and Employment through the Natural Hazard Research Platform subcontract: C05X0804. Additional support was provided by the New Zealand Earthquake Commission, GNS Science and Auckland Council through the DEVORA project. The INIBIOMA team was funded by CONICET (Special fund for the emergency and research funding PIP 2011 0311 GI) and by the Scientific Cooperation Agreement signed between Universidad Nacional del Comahue and the province of Neuquén.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Craig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Craig, H., Wilson, T., Stewart, C. et al. Agricultural impact assessment and management after three widespread tephra falls in Patagonia, South America. Nat Hazards 82, 1167–1229 (2016). https://doi.org/10.1007/s11069-016-2240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2240-1

Keywords

Navigation