Skip to main content

Advertisement

Log in

Hazard assessment at the Quaternary La Garrotxa Volcanic Field (NE Iberia)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

La Garrotxa Volcanic Field (GVF) in the NE Iberian Peninsula is one of the Quaternary alkaline volcanic provinces that form part of the European Cenozoic Rift System. Active over the last 0.7 Ma, the most recent dated eruption in this volcanic zone took place in the early Holocene (11–13 ka). Its volcanic activity has varied from Hawaiian to violent Strombolian, with numerous episodes of phreatomagmatic activity, and is controlled by the main regional normal faults generated during the Neogene extension that affected the area. Despite the potential for future eruptions and the fact that this is a densely populated industrial area, no volcanic hazard assessment of the field has ever been conducted. In this work, we present the first comprehensive evaluation of the volcanic hazard in the GVF via (1) an evaluation of its volcanic susceptibility, (2) a temporal recurrence rate analysis, (3) a simulation of different eruptive scenarios, such as lava flows, pyroclastic density currents and ashfall, and (4) the elaboration of a qualitative hazard map. The final hazard map shows that the GVF can be subdivided into five different hazard levels, knowledge that will be useful for land-use management and the drawing up of emergency plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alberico I, Petrosino P, Lirer L (2011) Volcanic hazard and risk assessment in a multi-source volcanic area: the example of Napoli city (Southern Italy). Nat Hazards Earth Syst Sci 11:1–14

    Article  Google Scholar 

  • Alcorn R, Panter KS, Gorsevski PV (2013) A GIS-based volcanic hazard and risk assessment of eruptions sourced within Valles Caldera, New Mexico. J Volcanol Geotherm Res 267:1–14

    Article  Google Scholar 

  • Araña V, Aparicio A, Martin Escorza C, Garcia Cacho L, Ortiz R, Vaquer R, Barberi F, Ferrara G, Albert J, Gassiot X (1983) Neogene–Quaternary volcanism of Catalunya: structural, petrological, and geodynamic characteristics. Acta Geol Hisp 18:1–17

    Google Scholar 

  • Aspinall WP (2006) Structured elicitation of expert judgment for probabilistic hazard and risk assessment in volcanic eruptions. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology. Special publication of IAVCEI 1. Geological Society of London, London, pp 15–30

    Google Scholar 

  • Barde-Cabusson S, Gottsman J, Martí J, Bolós X, Camacho AG, Geyer A, Ll Planagumà, Ronchin E, Sanchez A (2014) Structural control of monogenetic volcanism in the Garrotxa volcanic field (Northeastern Spain) from gravity and self-potential measurements. Bull Volcanol 76:788

    Article  Google Scholar 

  • Bartolini S, Cappello A, Martí J, Del Negro C (2013) QVAST: a new quantum GIS plugin for estimating volcanic susceptibility. Nat Hazards Earth Syst Sci 13:3031–3042

    Article  Google Scholar 

  • Bartolini S, Geyer A, Martí J, Pedrazzi D, Aguirre-Díaz G (2014) Volcanic hazard on deception Island (South Shetland Islands, Antarctica). J Volcanol Geotherm Res 285:150–168. doi:10.1016/j.jvolgeores.2014.08.009

    Article  Google Scholar 

  • Bebbington MS, Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland volcanic field, New Zealand, with a new event-order model. Bull Volcanol 73:55–72

    Article  Google Scholar 

  • Becerril L, Bartolini S, Sobradelo R, Martí J, Morales JM, Galindo I (2014) Long-term volcanic hazard assessment on El Hierro (Canary Islands). Nat Hazards Earth Syst Sci 14:1853–1870

    Article  Google Scholar 

  • Belousov A, Belousova M, Chen CH, Zellmer GF (2010) Deposits, character and timing of recent eruptions and gravitational collapses in Tatun Volcanic group, Northern Taiwan: hazard-related issues. J Volcanol Geotherm Res 191:205–221

    Article  Google Scholar 

  • Bolós X, Planagumà L, Martí J (2014a) Volcanic stratigraphy of the Quaternary La Garrotxa volcanic field (north-east Iberian Peninsula). J Quat Sci 29(6):547–560

    Article  Google Scholar 

  • Bolós X, Barde-Cabusson S, Pedrazzi D, Martí J, Casas A, Lovera R, Nadal-Sala D (2014b) Geophysical exploration on the subsurface geology in the monogenetic La Garrotxa Volcanic field (NE Iberian Peninsula). Int J Earth Sci. doi:10.1007/s00531-014-1044-3

    Google Scholar 

  • Bolós X, Martí J, Becerril L, Planagumà L, Grosse P, Barde-Cabusson S (2015) Volcano-structural analysis of La Garrotxa volcanic field (NE Iberia): implications for the plumbing system. Tectonophysics 642:58–70

    Article  Google Scholar 

  • Cappello A, Del Negro C, Vicari A (2010) Lava flow susceptibility map of Mt Etna based on numerical simulations. In: Fortuna L, Fradkov A, Frasca M (eds) From physics to control through an emergent view. World Scientific Publishing Co. Pte. Ltd., Singapore, Vol 15, pp 201–206

  • Cappello A, Vicari A, Del Negro C (2011) Assessment and modeling of lava flow hazard on Etna volcano. Boll Geofis Teor Appl 52:299–308

    Google Scholar 

  • Cappello A, Neri M, Acocella V, Gallo G, Vicari A, Del Negro C (2012) Spatial vent opening probability map of Mt Etna volcano (Sicily, Italy). Bull Volcanol 74(9):2083–2094

    Article  Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions (modern and ancient). A geological approach to processes products and successions. Chapman & Hall, London

  • Cebrià JM, López-Ruiz J, Doblas M, Oyarzun R, Hertogen J, Benito R (2000) Geochemistry of the Quaternary alkali basalts of Garrotxa (NE Volcanic Province, Spain): a case of double enrichment of the mantle lithosphere. J Volcanol Geotherm Res 102:217–235

    Article  Google Scholar 

  • Cimarelli C, Di Tragia F, de Rita D, Gimeno Torrente D, Fernandez Turiel JL (2013) Space–time evolution of monogenetic volcanism in the mafic Garrotxa volcanic field (NE Iberian Peninsula). Bull Volcanol 75:758

    Article  Google Scholar 

  • Connor CB, Connor LJ (2009) Estimating spatial density with kernel methods. In: Connor CB, Chapman NA, Connor LJ (eds) Volcanic and tectonic hazard assessment for nuclear facilities. Cambridge University Press, Cambridge, pp 331–343

    Chapter  Google Scholar 

  • Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of Volcanoes. Academic Press, San Diego, pp 331–343

    Google Scholar 

  • Connor CB, Stamatakos J, Ferrill D, Hill B, Ofoegbu G, Conway F, Sagar B, Trapp J (2000) Geologic factors controlling patterns of small-volume basaltic volcanism: application to a volcanic hazards assessment at Yucca Mountain, Nevada. J Geophys Res Solid Earth 105:417–432

    Article  Google Scholar 

  • Connor LJ, Connor CB, Meliksetian K, Savov I (2012) Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia. J Appl Volcanol 1:3

    Article  Google Scholar 

  • Cronin SJ, Neall VE (2001) Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji. NZ J Geol Geophys 44(3):417–437

    Article  Google Scholar 

  • Dèzes P, Schmid SM, Ziegler PA (2004) Evolution of the European Cenozoic rift system: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389(1–2):1–33

    Article  Google Scholar 

  • Di Traglia F, Cimarelli C, de Rita D, Gimeno Torrente D (2009) Changing eruptive styles in basaltic explosive volcanism: examples from Croscat complex scoria cone, Garrotxa volcanic field (NE Iberian Peninsula). J Volcanol Geotherm Res 180:89–109

    Article  Google Scholar 

  • Farnell C, Llasat MC (2013) Proposal of three thermodynamic variables to discriminate between storms associated with hail and storms with intense rainfall in Catalonia. Tethys 10:25–34

    Google Scholar 

  • Favalli M, Tarquini S, Papale P, Fornaciai A, Boschi E (2012) Lava flow hazard and risk maps at Mount Cameroon volcano. Bull Volcanol 74:423–439

    Article  Google Scholar 

  • Felpeto A, Martí J, Ortiz R (2007) Automatic GIS-based system for volcanic hazard assessment. J Volcanol Geotherm Res 166:106–116

    Article  Google Scholar 

  • Guérin G, Valladas G (1980) Thermoluminescence dating of volcanic plagioclases. Nature 286:697–699

    Article  Google Scholar 

  • Guérin G, Behamoun G, Mallarach JM (1985) Un exemple de fusió parcial en medi continental. El vulcanisme quaternari de la Garrotxa 1. Publicació del Museu Comarcal de la Garrotxa, Vitrina, pp 19–26

  • Guilbaud MN, Siebe C, Agustín-Flores J (2009) Eruptive style of the young high-Mg basaltic-andesite Pelagatos scoria cone, southeast of México city. Bull Volcanol 71(8):859–880

    Article  Google Scholar 

  • Guilbaud MN, Siebe C, Layer P, Salinas S, Castro-Govea R, Garduño Monroy VH, Le Corvec N (2011) Geology, geochronology, and tectonic setting of the Jorullo volcano region, Michoacán, México. J Volcanol Geotherm Res 201:97–112

    Article  Google Scholar 

  • Ho CH, Smith EI, Feuerbach DL, Naumann TR (1991) Eruptive calculation for the Yucca Mountain site, USA: statistical estimation of recurrence rates. Bull Volcanol 54:50–56

    Article  Google Scholar 

  • Höbig N, Weber ME, Kehl M, Weniger GC, Julià R, Melles M, Fülöp RH, Vogel H, Reicherter K (2012) Lake Banyoles (northeastern Spain): a last glacial to holocene multi-proxy study with regard to environmental variability and human occupation. Quat Int 274:205–218

    Article  Google Scholar 

  • Kereszturi G, Németh K (2012) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Németh K (ed) Updates in volcanology—New advances in understanding volcanic systems. InTech Open, Rijeka, pp 3–89

    Google Scholar 

  • Kereszturi G, Németh K, Csillag G, Balogh K, Kovács J (2011) The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J Volcanol Geotherm Res 201:227–240

    Article  Google Scholar 

  • Kereszturi G, Németh K, Cronin SH, Agustín-Flores J, Smith IEM, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes—Implication for the quaternary Auckland volcanic field, New Zealand. J Volcanol Geotherm Res 266:16–33

    Article  Google Scholar 

  • Kereszturi G, Németh K, Cronin SJ, Procter J, Agustín-Flores J (2014) Influences on the variability of eruption sequences and style transitions in the Auckland volcanic field, New Zealand. J Volcanol Geotherm Res 286:101–115

    Article  Google Scholar 

  • Lirer L, Petrosino P, Alberico I (2001) Volcanic hazard assessment at volcanic fields: the Campi Flegrei case history. J Volcanol Geotherm Res 112(1–4):53–73

    Article  Google Scholar 

  • Malin MC, Sheridan MF (1982) Computer-assisted mapping of pyroclastic surges. Science 217:637–640

    Article  Google Scholar 

  • Martí J, Felpeto A (2010) Methodology for the computation of volcanic susceptibility. An example for mafic and felsic eruptions on Tenerife (Canary Islands). J Volcanol Geotherm Res 195:69–77

    Article  Google Scholar 

  • Martí J, Mallarach JM (1987) Erupciones hidromagmáticas en el volcanismo cuaternario de Olot. Estud Geol 43:31–40

    Google Scholar 

  • Martí J, Mitjavila J, Roca E, Aparicio A (1992) Cenozoic magmatism of the Valencia trough (western Mediterranean): relationship between structural evolution and volcanism. Tectonophysics 203:145–165

    Article  Google Scholar 

  • Martí J, Aspinall W, Sobradelo R, Felpeto A, Geyer A et al (2008) A long-term volcanic hazard event tree for Teide-Pico Viejo stratovolcanoes (Tenerife, Canary Islands). J Volcanol Geoth Res 178:543–552

    Article  Google Scholar 

  • Martí J, Planagumà L, Geyer A, Canal E, Pedrazzi D (2011) Complex interaction between Strombolian and phreatomagmatic eruptions in the Quaternary monogenetic volcanism of the Catalan Volcanic Zone (NE of Spain). J Volcanol Geotherm Res 201:178–193

    Article  Google Scholar 

  • Martí J, Sobradelo R, Felpeto A, García O (2012) Eruptive scenarios of phonolitic volcanism at Teide-Pico Viejo volcanic complex (Tenerife, Canary Islands). Bull Volcanol 74:767–782

    Article  Google Scholar 

  • Martí J, Pinel V, López C, Geyer A, Abella R, Tárraga M, Blanco MJ, Castro A, Rodríguez C (2013) Causes and mechanisms of the 2011–2012 El Hierro (Canary Islands) submarine eruption. J Geophys Res Solid Earth 118:823–839

    Article  Google Scholar 

  • Martin AJ, Umeda K, Connor CB, Weller JN, Zhao D, Takahashi M (2004) Modeling long-term volcanic hazards through Bayesian inference: an example from the Tohuku volcanic arc Japan. J Geophys Res 109:B10208

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Furlan C (2006) A quantitative model for volcanic hazard assessment. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in Volcanology. Special Publication of IAVCEI 1. Geological Society of London, pp 15–30

  • Németh K (2010) Monogenetic volcanic fields: Origin, sedimentary record, and relationship with polygenetic volcanism. In: Cañón-Tapia E, Szakács A (eds) What is a Volcano? Geological Society of America, pp 43–66

  • Németh K, Cronin S, Smith IM, Agustin Flores J (2012) Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland volcanic field. NZ Bull Volcanol 74(9):2121–2137

    Article  Google Scholar 

  • Neri A, Aspinall WP, Cioni R, Bertagnini A, Baxter PJ et al (2008) Developing an event tree for probabilistic hazard and risk assessment at Vesuvius. J Volcanol Geotherm Res 178(3):397–415

    Article  Google Scholar 

  • Puiguriguer M, Alcalde G, Bassols E, Burjachs F, Expósito I, Ll Planagumà, Saña M, Yll E (2012) 14C dating of the last Croscat volcano eruption (Garrotxa Region, NE Iberian Peninsula). Geol Acta 10(1):43–47. doi:10.1344/105.000001709

    Google Scholar 

  • Sandri L, Jolly G, Lindsay J, Howe T, Marzocchi W (2012) Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland volcanic field, New Zealand. Bull Volcanol 74:705–723

    Article  Google Scholar 

  • Scandone R (1979) Effusion rate and energy balance of Paricutin eruption (1943–1952), Michoacan, Mexico. J Volcanol Geotherm Res 6:49–59

    Article  Google Scholar 

  • Siebe C, Macías JL (2006) Volcanic hazards in the Mexico city metropolitan area from eruptions at Popocatépetl, Nevado de Toluca, and Jocotitlán stratovolcanoes and monogenetic scoria cones in the Sierra Chichinautzin volcanic field. Geol Soc Am Spec Pap 402:253–329

    Google Scholar 

  • Spera FJ (1980) Aspects of magma transport. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton, pp 265–323

    Google Scholar 

  • Spera FJ (1984) Carbon dioxide in petrogenesis III: role of volatiles in the ascent of alkaline magma with special reference to xenolith-bearing mafic lavas. Contrib Miner Petrol 88:217–232

    Article  Google Scholar 

  • Suzuki T (1983) A theoretical model for dispersion of tephra. In: Shimozuru D, Yokoyama I (eds) Arc volcanism: physics and tectonics. Terra Scientific Publishing Company (TERRAPUB), Tokyo, pp 95–116

    Google Scholar 

  • Szakács A, Seghedi I (2013) The relevance of volcanic hazard in Romania: is there any? Environ Eng Manage J 12:125–135

    Google Scholar 

  • Toyos GP, Cole PD, Felpeto A, Martí J (2007) A GIS-based methodology for hazard map- ping of small pyroclastic density currents. Nat Hazards 41:99–112

    Article  Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—Processes and problems. J Volcanol Geotherm Res 177:857–873

    Article  Google Scholar 

  • Wood CA (1980) Morphometric evolution of cinder cones. J Volcanol Geotherm Res 7:387–413

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the European Commission (FP7 Theme: ENV.2011.1.3.3-1; Grant 282759: VUELCO). We would like to thank Jordi Zapata from the Museu dels Volcans d’Olot for his help with the meteorological information. We also want to thank K. Németh and an anonymous reviewer for their very useful suggestions that have enabled us to significantly improve our manuscript. We also thank the Editor Thomas Glade for handling this paper. Michael Lockwood corrected the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Bartolini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartolini, S., Bolós, X., Martí, J. et al. Hazard assessment at the Quaternary La Garrotxa Volcanic Field (NE Iberia). Nat Hazards 78, 1349–1367 (2015). https://doi.org/10.1007/s11069-015-1774-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1774-y

Keywords

Navigation